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Abstract

We introduce the concept of Frobenius theory as a generalisation of Lawvere’s
functorial semantics approach to categorical universal algebra. Whereas the universe
for models of Lawvere theories is the category of sets and functions, or more
generally cartesian categories, Frobenius theories take their models in the category
of sets and relations, or more generally in cartesian bicategories.

1 Introduction and roadmap

There has been a recent explosion of interest in algebraic structures borne by ob-
jects of symmetric monoidal categories [35], with applications in quantum founda-
tions [[1l [19] [21]], concurrency theory [7]], control theory and engineering [2} 14} 3],
linguistics and formal language theory [46l 49, (48], database theory [9] and probability
theory [30] amongst others. In several cases these “resource-sensitive” algebraic theo-
ries are presented using generators and equations. Moreover, many contain Frobenius
algebra [18] as a sub-theory, which yields a self-dual compact closed structure and
gives the theories a relational flavour, e.g. a dagger operation, which one can often
think semantically as giving the opposite relation. In this paper we propose a categorical
universal algebra for such monoidal theories, generalising functorial semantics, the
classical approach due to Lawvere. A notion of model clarifies the conceptual landscape,
and is a useful tool for the study of the algebraic theories themselves. For example:
how can one show that a particular equation does not hold in a theory? Reasoning
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directly with an equational theory can be difficult, since showing that an equation is
not derivable from a set of axioms using equational reasoning is often difficult. Instead,
one obvious way is to find a model where the equation does not hold.

1.1 Functorial semantics

Lawvere categories [39] (also known as finite product theories) are a standard
setting for classical universal algebra. Syntactically speaking, terms are trees where
some leaves are labelled with variables, and these can be copied and discarded arbitrarily.
Categorically, this means a finite product structure, and (classical) models are product
preserving functors. In particular, to give the classical notion of model as a set, together
with appropriate n-ary functions, satisfying the requisite equations, is to give a product
preserving functor from the corresponding Lawvere category to the category of sets and
functions £ — Set. This methodology is commonly referred to as functorial semantics.

For example, commutative monoids are exactly the product preserving functors from
the Lawvere category of commutative monoids, abelian groups the product preserving
functors from the Lawvere category of abelian groups, etc. Moreover, the usual notion
of homomorphism between models is given by natural transformations between models-
as-functors.

Specification algebraic theory
Syntax trees
Category Lawvere category (finite product category)
Models product preserving functors
Homomorphisms natural transformations

In applications, classical algebraic theories are often not the right fit. Sometimes this
is because an underlying data type is not classical, e.g. qubits, that cannot be copied.
Other times it’s because one needs to be explicit about the actual copying and discarding
being carried out as (co)algebraic operations, instead of relying on an implicit cartesian
structure. That is, we require a resource sensitive syntax. In practice, this means replacing
algebraic theories with symmetric monoidal theories (SMTs), trees with string diagrams,
cartesian product with symmetric monoidal product (Lawvere categories with props),
and product preserving functors with monoidal functors. This suggests an updated
table:

Specification symmetric monoidal theory (SMT)

Syntax string diagrams
Category prop
Models symmetric monoidal functors

Homomorphisms | monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,
such that m®n = m + n. Of course, any Lawvere category is an example of a prop, since
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the cartesian structure induces a canonical symmetry. Arrows of (freely generated)
props seem, therefore, to offer an attractive solution to the quest for resource sensitive
syntax. Given that the underlying monoidal product is not assumed to be cartesian,
props give the possibility of considering bona fide operations with co-arities other than
one, e.g. the structure (comultiplication and counit) of a comonoid. In fact, comonoids
are the bridge [28] between the classical and the resource-sensitive.

Roughly speaking, given an algebraic theory, we can regard it as a symmetric
monoidal theory by “encoding” the cartesian structure with comonoids. More precisely,
one introduces a commutative comonoid (copying) and equations making all other
operations comonoid homomorphisms:

This leads one to observe that, as props, the following are actually isomorphic:

Lawvere category Ly of commutative monoids CM

>~

prop P of (co/commutative) bialgebras B

Thus, in effect, bialgebras are what one gets by considering classical commutative
monoids and taking resource sensitivity seriously. Similarly, Hopf algebras can be seen
as abelian groups in a “resource sensitive” universe:

Lawvere category Lag of abelian groups AG

>~

prop Py of (co/commutative) Hopf algebras

The structure of props suggests that, for models, we ought to look at symmetric
monoidal functors. Indeed, considering the monoidal category of sets and functions Set
(with cartesian product as monoidal product) as codomain, the symmetric monoidal
functors from the prop of commutative monoids are in bijective correspondence with
ordinary commutative monoids. Here it is the products of Set that ensure that, although
the theory is non-cartesian, the models are classic. Similarly, commutative monoids
are captured by symmetric monoidal functors g — Set; it is not difficult to show that
the only comonoid action on a set is given by the diagonal, so the “copying” comonoid
structure is uniquely determined in any Set-model of Pg.

1.2 Relations as a universe for models

Our goal is to study algebras of relations, e.g. relational algebra, allegories, Kleene
algebra, automata, labelled transition systems, etc. We are therefore interested in
developing a theory of functorial semantics that takes its models in the monoidal
category Rely: objects are sets, arrows are relations, and the subscript indicates that we
take cartesian product as monoidal product.
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Here mere props and monoidal functors are not enough to characterise commutative
monoids. Considering the prop of commutative monoids, monoidal functors to Rely
are not guaranteed to give a functional monoid action: e.g., one could map the monoid
action to the opposite of the diagonal relation. Considering the prop of bialgebras fails
also: there is no guarantee that the comultiplication maps to the diagonal. For a concrete
example, consider:

1— N Ve +=Axy): X XX.x+y
T Ax:{x}:0 A VP (2)
1 T%

Here, the properties of addition of N, a ring without negatives, ensure that the bialgebra
equations are satisfied; in particular, if x + y =0, then x =y = 0.

We could require, for props that have a commutative comonoid structure that defines
a product, that the product structure be preserved, so that A is mapped to the diagonal.
Unfortunately, this would preclude considering Rely as a universe of models, since the
monoidal product in Rely is not a cartesian product (recall that Rel actually has + as
biproduct). Indeed, when interpreted in Rel, the general form of Equations

n
m n m m n m
e A

tells us that R is single-valued and total, which is true only of those relations that are
(the graphsﬂ of total) functions.

A crucial observation to make at this point is that products play two different roles
in functorial semantics a la Lawvere. The first assures that the underlying data can
be copied and deleted. This means the assumption of a “classical universe” and such
an assumption excludes dealing with quantum data [22}20]. We will not consider this
aspect in the present paper. The second role is preservation of arities, the idea that
one should be able to specify algebraic operations on a set or an object in a cartesian
category. This second role concerns us here.

In particular, cartesian products are generalized to lax cartesian products, which
Carboni and Walters [[18] identified as important for the algebra of categories of relations.
Indeed, the monoidal product of Rely satisfies a lax universal property. In practice
this turns out to be, bureaucratically speaking, quite a tame notion of laxness: the 2-
dimensional structure of Rely is posetal (set inclusion), and indeed we will concentrate
on the poset-enriched case. At specification level, this means that it’s natural to introduce
inequations between terms.

!The graph of a function f : X — Y is the relation {(x, f(x)) :x € X} C X x Y.
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In fact, the most we can say about relations R, in general, is that they are lax
comonoid homomorphisms:

R s RS, tde 3o

If all arrows are lax homomorphisms in this sense then the monoidal product is a lax
product. Crucially, (3) holds in Rely, where X-comultiplication is the diagonal relation
{(x, (x,x)) : x € X}, that is, the graph of the diagonal function. Recall that, in Rely, the
Inequations (3) are strict exactly when, respectively, R is not single valued and not total.

1.3 Lax product theories

By a lax product theory we mean a generalisation of SMT that replaces equations
with inequations, and includes a chosen commutative comonoid structure. Moreover,
we require Inequations (3) that say that all other data is a lax comonoid homomorphism.
We call the comonoid structure together with the aforementioned inequations a lax
product structure. Every lax product theory leads to a free ordered prop (a prop enriched
in the category or posets and monotone maps), where (3) ensure that the monoidal
product is a lax product, in the bicategorical sense.

Specification lax product theory
Syntax string diagrams
Category lax product 2-prop
Models lax product structure preserving functors
Homomorphisms monoidal lax natural transformations

Note that both the SMT of bialgebras and Hopf algebras are lax product theories
(each equation is replaced by two inequations). And we now obtain a satisfactory
“resource sensitive” generalisation of Lawvere’s functorial semantics to Rel-models. For
example, the models of the SMT of bialgebras, given by lax product structure preserving
functors to Rely, are exactly commutative monoids. This may appear surprising, since
we are mapping to Rely, one could expect that V may map to an arbitrary relation.
Instead, the fact that we need to preserve lax products means, since V is functional in
the specification, it maps to a function in the model. Moreover, the categories of models
(where morphisms between models are given by monoidal natural transformations)
coincide: both are the category of commutative monoids and homomorphisms. Thus
the problem of (2) is avoided.

Yet lax product theories are not quite expressive enough for our purposes. We have
seen that, using the lax product structure, we can express equationally when a relation
is a function. But we cannot, for instance, say when a relation is a “co-function”, that
is, the opposite relation of a function. This capability is very useful in examples, for
example for the calculus of fractions in the SMT of Interacting Hopf Algebras [13].
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1.4 Frobenius theories

A Frobenius theory — a concept introduced in this paper — is a lax product theory
that includes additionally a “black” commutative monoid right adjoint to the comonoid:

e s

—e o— —e < i

IA

©

IA

In general, a relation with a right adjoint is a function: the two inclusions in the first
line of (4) respectively say that the comonoid operation is total and single-valued; the
two inclusions in the second line that its unit is total and single-valued. The crucial law
that makes the comonoids and the dual monoids into a Frobenius theory is comprised
of the Frobenius equations (first line) and the special inequality (second line):

B =

—O—s— (6)

The special inequality says that the monoid is single-valued. Together with the reverse
inequality at the top left of (4), it gives the special equality, which says that the comulti-
plication postcomposed with the multiplication is the identity. The Frobenius equations,
on the other hand, say that the multiplication postcomposed with the comultiplica-
tion can be decomposed in two ways, providing two interpolants [46, Section 4]. The
equivalent forms, justifying Lawvere’s attribution to Frobenius [38], assert stability
of inverse images under direct images [42] and allow abstraction in monoidal cate-
gories [44] Theorem 4.3]. Without the constraint that the comonoid is single-valued,
the Frobenius equations in the monoidal category Rely of relations over sets precisely
characterize abelian groups [43]. In the monoidal category PRely of relations over
partial orders, they characterize Lambek’s pregroups [36} [46] and play an important
role in modern theory of language and logic [17| 37, 50]. Together with the special
law, the Frobenius equations induce the spider theorem, which implies that the mirror
images of (3) hold, i.e. that, with respect to Frobenius algebras, relations are not only
lax comonoid homomorphisms but also lax monoid homomorphisms:

m
m n n m n n
< m < &

Frobenius algebras with single-valued comonoids, making the monoidal structure
lax cartesian, were studied in the seminal paper [18] by Carboni and Walters. The free
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ordered prop induced by (4) and (5) is what we refer to as a Frobenius prop (frop) or
a Carboni-Walters category. Indeed, it is an example of Carboni-Walters’ bicategory
of relations [[18] Section 2]: a cartesian bicategory where the “black” structure satisfies
the Frobenius equations. Discarding the 2-structure yields a hypergraph category (also
known as well-supported compact closed category).

Specification Frobenius theory
Syntax string diagrams
Category Carboni-Walters category
Models lax product preserving functors
Homomorphisms | monoidal lax natural transformations

The frop of commutative monoids can be thought of as the prop of bialgebras,
together with an additional commutative “black” monoid. Again, as in the case of lax
product theories, the models in Rely are ordinary commutative monoids, and the model
transformations are monoid homomorphisms. The example of commutative monoids
generalises to arbitrary algebraic theories: there is a procedure, analogous to that of
producing an SMT from a classical algebraic theory, that results in a Frobenius theory, so
that the models of the relevant Lawvere category in Set are in bijective correspondence
with the models of the Frobenius theory in Relx. More than that, the categories of
models are equivalent.

But Frobenius theories give us much more that a way of doing “resource-honest”
algebraic theories in Rely: they are much more expressive and allow us to bring many
new examples into the fold. This paper introduces the basic theory together with a wide
range of examples.

1.5 From Manoa to Punaauia

During 2016 and 2017, the first and third authors made several research visits to the
second author at the University of Hawaii at Manoa. Frobenius algebras had previously
been used as an important tool in categorical models of computation, whether to separate
the nondeterministic from the probabilistic models, and classical from quantum [20 43]],
or to characterize computational bases in vector spaces [23]], or as the centerpiece of data
services in categorical computers [45]]. The visits brought together our complementary
toolkits. The present paper was drafted as a research report of some of the work that
we did together and it was posted on arXiv in 2017. Although never submitted for
publication, the draft garnered a number of citations, and led to further work, including
four Ph.D. theses [51}[25[41}[32]] and several significant contributions [9}[10} 2618} 51 311 €]
to theoretical computer science. The use of monoidal structures in theory and practice
computation turned out to be convenient for teaching and led to a monograph [47]],
superseding [45] and giving new insights on foundational results of computability
theory, while at the same time making the subject suitable for an undergraduate level
course.

In 2023, while the first author was visiting the University of French Polynesia in
Punaauia, this research culminated in the introduction of the first-order bicategory [4],
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which can be seen as an extension of the Frobenius theory presented in this work,
expanding it into a full first-order framework.

We consider this paper a humble offering of gratitude for the inspiration provided
by Polynesia and its academic environment.

1.6 Structure of the Paper

We recall symmetric monoidal theories and props in Section |2| and explain how
classical algebraic theories can be considered as symmetric monoidal theories, and the
corresponding Lawvere theories as certain props. In Sectionwe extend the picture
to inequational theories, resulting in poset-enriched props. We also identify the cru-
cial concept of lax product structure, which allows us to keep the “arity-preservation”
property of classical models. In Section [4 we introduce the central concept of Frobenius
theory, describe models, and focus on some general properties. In Section[5] we highlight
interesting examples of Frobenius theories, showcasing the expressivity of the frame-
work. In Section[6] we explain how cartesian theories can be considered as Frobenius
theories, without altering the category of models. The last sections are in-depth looks at
three ubiquitous mathematical theories, considered as Frobenius theories: commutative
monoids (Section(7), abelian groups (Section [8), and modules (Section [9).

2 Symmetric monoidal theories and props

Our exposition is founded on symmetric monoidal theories: presentations of algebraic
structures borne by objects in a symmetric monoidal category.

Definition 2.1. A (presentation of a) symmetric monoidal theory (SMT) is a pair T =
(3, E) consisting of a signature X and a set of equations E. The signature % is a set
of generators o : n — m with arity n and coarity m. The set of X-terms is obtained
by composing generators in %, the unitsidy : 0 — 0, id; : 1 — 1, and the symmetry
011 : 2 — 2 with ; and ®. This is a purely formal process: given X-termst : k — I,
u:l— m,v:m — n, one constructs new 2-termst;u:k > mandt®v:k+n — [ +n.
The set E of equations contains pairs (t,t' : n — m) of X-terms with the same arity and
coarity.

The categorical concept associated with symmetric monoidal theories is the notion
of prop (product and permutation category [40]).

Definition 2.2. A prop is a symmetric strict monoidal category with objects the natural
numbers, where & on objects is addition. The prop freely generated by a theory T = (2, E),
denoted by Pr, has as its set of arrows n — m the set of X-terms n — m taken modulo
the laws of symmetric strict monoidal categories (displayed in Figure[1), and the smallest
congruence (with respect to ; and ®) containing equationst =t’ for any (t,t") € E.

There is a natural graphical representation for arrows of a prop as string diagrams,
which we now sketch, referring to [52] for the details. A 2-term n — m is pictured as
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(t1583) @ (t25t) = (L1 ® 12) 5 (13 D 1g)

(tista) sts =t (k25 t3) idysc=c=cj;idp
(L @t) Bt =t & (, ® t3) idy@t=t=teid
01,15 01,1 = idy (t®id;); omz = 0Onz; (id, @ 1)

Figure 1: Axioms of symmetric strict monoidal categories for a prop T.

a box with n ports on the left and m ports on the right. Composition via ; and @ are
rendered graphically by horizontal and vertical juxtaposition of boxes, respectively:

t;s isdrawn t®s isdrawn

In any SMT there are specific 2-terms generating the underlying symmetric monoidal
structure: these are id; : 1 — 1, represented as Er, the symmetry oy : 1 +1 —
1 + 1, represented as X, and the unit object for @, that is, idy : 0 — 0, whose
representation is an empty diagram. Graphical representation for arbitrary identities
id, and symmetries oy, ,, can be generated inductively, we omit the details here.

Example 2.3.

(a) We write CM = (Zp, Epr) for the SMT of commutative monoids. The signature X
contains a multiplication “»— :2 — 1and a unit o— : 0 — 1. The equations
below form Ey; and assert associativity (7), commutativity (8) and unitality (9).

P = )
)()3_

P ®)
T

©)

(b) Dually, consider the SMT CC = (3¢, E¢) of commutative comonoids. Its signature
Y ¢ consists of a comultiplication —«_ :1 — 2 and a counit —e :1 — 0. Its set
of equations E¢ consists of:

—C

—C

(11)

—~C (10)
—0C

:

(12)
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(c) Monoids and comonoids can be combined into a theory that plays an important
role in our exposition: the theory of special Frobenius algebras [18]). This is given
by F = (Zpm W Ec, Em W Ec W F), where F consists of the equations:

< >c- e

(14)

<>

(d) Another fundamental way to combine monoids and comonoids is the theory of
(commutative/cocommutative) bialgebras B = (Zp W Z¢, Ey W Ec W B), where B
consists of the equations:

“p—e = _, (15)
o« =" (16)
S~
o—e = idg (18)

One can read (15)—(18) as stating that the monoid structure (multiplication,unit) is
a comonoid homomorphism, and vice versa, the comonoid structure is a monoid
homomorphism.

Bialgebras and special Frobenius algebras play an important role in recent research
threads in quantum [[19}[12]], concurrency [[16] 53] and control theory [11] 2] [14].

(e) Another theory that plays a crucial role in the aforementioned works is the theory
H of Hopf algebras. 1t is obtained from the theory of bialgebra by extending the
signature Xy W X with the antipode —M— : 1 — 1 and the set of equations

Eyp W Ec W B with the three equations:
-

= —e (20)

(21)

e

The assertion that CM is the SMT of commutative monoids — and similarly for other
SMTs in our exposition — can be made precise through the notion of model of an SMT.
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Definition 2.4. Given a symmetric monoidal category C, a model of an SMTT inC is a
symmetric monoidal functor F : Pt — C. Then Modsmt (T, C) is the category of models
of T in C and monoidal natural transformations between them.

Turning to commutative monoids, there is a category Monoid(C) whose objects are
the commutative monoids in C, i.e., objects x € C equipped with arrows x ® x — x and
I — x, satisfying the usual equations. Given any model F : Py — C, it follows that F1
is a commutative monoid in C: this yields a functor Modsmt(Pcyi, C) — Monoid(C).
Saying that (2, Ex) is the SMT of commutative monoids means that this functor is an
equivalence natural in C.

We can recover classical models by considering symmetric monoidal functors to
Sety, the symmetric monoidal category of sets, where the monoidal product is the
cartesian product X. Indeed, the functor is determined, up-to natural isomorphism, by
where it sends 1. Concretely, we can consider the imagedog a symmetric monoidal functor
of this type to consist of the sets of n-tuples n — X" ={(x1,...,%n) : x; € X}, where
X = F1. Then Monoid(Sety) is equivalent to the category of ordinary commutative
monoids and monoid homomorphisms.

2.1 Cartesian theories and Lawvere categories

A cartesian category (or finite product category) is a symmetric monoidal category
where the monoidal product @ satisfies the universal property of the categorical product;
a cartesian functor is a product preserving functor. It is well-known [28] that a symmetric
monoidal category C is cartesian if and only if, for every object n in C, there are arrows
Ay :n—n®nand!, : n — I forming a cocommutative comonoid, graphically denoted
by —« and —e ,and every arrow f : m — n in C is a comonoid homomorphism:

;
:

A Lawvere category [39,33] is then a symmetric monoidal category that is both cartesian
and a prop.

Example 2.5.

(a) Recall the theory of commutative comonoids CC = (S¢, Ec) from Example [2.3(b).
The resulting prop Pcc is the initial Lawvere category, the free category with
products on one object. The comultiplication —«_ :1 — 2 and the counit —e :
1 — 0 are the comonoidon 1. Forn € N, A, :n > n®nand!, : n — 0 are
defined recursively: Ay = idg and Api1 = (A1 @ Ay) 5 (id; @0y, @ 1dy), 1o = ido
and !4 =11®!,.

(b) The prop of bialgebras Pz (Example [2.3[c)) is also a Lawvere category. For every
natural number, the comonoid structure is defined as above. Moreover all arrows in
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Pp are comonoid homomorphisms, since , , , say exactly that —p—
and o— are comonoid homomorphisms.

(c) Amongst the other SMTs in Example only H freely generates a Lawvere
category: indeed Equations and state that the antipode is a comonoid
homomorphism.

Definition 2.6. A (presentation of a) cartesian theory is a pair T = (2, E) consisting of a
signature % and equations E. ¥ is a set of generators o : n — 1 with arity n and coarity 1.
The set of equations E contains pairs (t,t’' : n — 1) of cartesian X-terms, namely arrows
of the prop freely generated by the SMT (X W X, Ec W Ecyy) where Ecy contains equations

Jol.
fole -

for each generator O}~ : n — 1 of the signature 3.

The Lawvere category freely generated by a cartesian theory T = (%, E), denoted by
L, is the prop freely generated by the SMT (X & 3¢, EW Ec W Ecyy). The latter will be
often referred to as the SMT corresponding to the cartesian theory (2, E).

Cartesian terms can be thought as the familiar notion of standard syntactic term:
trees with leaves labeled by variables. The ability to copy and discard variables is given
by —« and —e, respectively. Since these structures are implicit in any cartesian
theory, one can therefore think of cartesian terms as resource-insensitive syntax. On
the other hand, the string diagrams of SMTs provide a resource-aware syntax since the
ability to add and copy variables, if available, is made explicit.

Example 2.7.

(a) In 3-terms of the SMT of commutative monoids CM = (2, Ey) (Example [2.3{a)),
variables cannot be copied or discarded. The cartesian theory of commutative
monoids has the same signature and equations, but terms have the implicit ca-
pability of being copied and discharged. Indeed, the Lawvere category Ly is
isomorphic to the prop Pg generated by the SMT of bialgebras (Example 2.3{(d)).

(b) By adding to CM the antipode —f— : 1 — 1 and Equation (21)), one obtains the
cartesian theory AG of abelian groups. The corresponding SMT is the theory H
of Hopf algebras (Example [2.3[e)): i.e. Py = Lag.

As for SMTs, the assertion that CM is the cartesian theory of commutative monoids
can be made precise using the notion of model of a cartesian theory.

Definition 2.8. Given a cartesian category C, a model of a cartesian theory T in C is a
cartesian functor F : L1 — C. Then Modcar(T, C) is the category of models of T in C
and monoidal natural transformations between them.
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For an example take the cartesian category Set. Every model F : L1 — Set maps 1
to some set X and thus every natural number n to X". Requiring F to be cartesian
forces the counit —e : 1 — 0 to be mapped into the unique morphism from X
to the final object 1 = X° and the comultiplication —«_ : 1 — 2 to the diagonal
Ax = (idy,idx) : X — X X X. So, a model F is uniquely determined by the set F1
and the functions Fo : (F1)" — F1 for each generator o : n — 1 of the signature. In
a nutshell, the notion of cartesian model for T coincides with the standard notion of
algebra. By spelling out the definition of natural transformation, one can readily check
that morphism of models are homomorphisms.

3 Lax product theories

A first step toward Frobenius theories and their models consists in relaxing products
and considering lax products instead. In this section, we introduce the categorical
machinery to deal with theories of inequations and lax products theories.

Definition 3.1. Suppose that ¥ is a set of generators and I is a set of inequations: similarly
to an equation, the underlying data of an inequation is simply a pair (t1, t;) of equal-typed
X-terms. Unlike equations, however, we will understand this data as being directed:

151

N

1)
We call the pair (2, 1) a (presentation of a) symmetric monoidal inequation theory (SMIT).

Throughout the paper we use ordered as a synonym for “enriched in Pos” - the
category of posets and monotonic functions. Indeed, just as SMTs lead to props, SMITs
lead to ordered props, as defined below.

Definition 3.2 (Ordered prop). An ordered prop is a prop enriched over the category
of posets: that is, it is a strict symmetric 2-category C with objects the natural numbers,

d
monoidal product on objects defined asm @ n =efm + n, where each set of arrows C[m, n|
is a poset, with composition and monoidal product monotonic. Similarly, a pre-ordered
prop is a prop enriched over the category of pre-orders.

We have seen how an SMT (3, E) yields a free prop. Analogously, from a SMIT (2, I)
one can generate a free ordered prop. First, we construct the free pre-ordered prop whose
arrows are 2-terms. The hom-set orders are determined by whiskering I and closing
it under @, then applying reflexive and transitive closure: this is the smallest preorder
containing I that makes C into a pre-ordered prop (i.e. composition is monotonic and &
is a 2-functor). Then, we obtain the free ordered prop by quotienting the free pre-ordered
prop by the equivalence induced by the pre-order; in other words, forcing antisymmetry
by equating terms s, t where s < tand ¢ < s.

Any SMT (3, E) gives rise to a canonical SMIT (Z, I) where each equation is replaced
with two inequalities I = E W E°P, in the obvious way. The free prop for (3, E) can
then be obtained from the free ordered prop for (Z,I) by forgetting the underlying
2-structure. For this reason, we can safely abuse the notation Pr to denote the ordered
prop freely generated by a SMIT T.
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Example 3.3.

(a) The SMT of commutative monoids CM = (Zu, Ey) (Example [2.3[a)) can be
regarded as the SMIT (Zy, Ey @ EoF).

(b) The SMT of cocommutative comonoids CC = (Z¢, Ec) (Example [2.3[b)) can be
regarded as the SMIT (3¢, Ec @ Egp ).

(c) The SMT of bialgebra B = (2 W3¢, Ey W Ec W B) (Example[2.3(d)) can be regarded
as the SMIT (S W ¢, Ey W EY @ Ec W EY @ Bw B%P).

(d) From the SMIT of bialgebra, one can drop the inequations B°? and obtain the
SMIT of lax bialgebras LB = (Spy WX, Eyq W E;f WE-W EOCP @ B). In this theory,
we have a monoid, a comonoid, and the inequations of B:

e < o (22)
oa < O (23)
=
o—e < idy (25)

These force the monoid to be a lax comonoid homomorphism.

(e) Alternatively, one can drop the inequations in B and obtains the SMIT of oplax
bialgebras OLB = (Zy WX, Em W E;f WEcW Egp @ B°P). The inequations of B°P

are:
e > (26)

O—C > i (27)
S

o—e > idg (29)

Particularly relevant for our exposition is the SMIT of commutative comonoids:
cartesian theories include an implicit comonoid structure and force the generators in the
signature to be comonoid homomorphisms. The theories that we are going to introduce
next — lax product theories — are analogous, but they require the generators to be lax
comonoid homomorphisms.
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Definition 3.4 (Lax product theory, LPT). A (presentation of a) lax product theory is a
pair T = (2,1) consisting of a signature X and a set of inequations I. The signature X is a
set of generators o : n — m with arity n and coarity m. The set of inequations I contains
pairs (t,t' : n — m) of L-3-terms, namely arrows of the ordered prop freely generated by
the SMIT (3 W Xc, Ec W Egp W Ircp) where I cy is the set containing

m5 e . (30)
o a
IntaE &

A
3
o]
E]

IA

for each generator o in X.

We refer to (W3¢, IWEc LﬂEgp WIcy) as the SMIT corresponding to an LPTT = (3, I).
The ordered prop freely generated by the SMIT corresponding to T is called the lax product
prop freely generated by T and denoted by LPr.

The mismatch between and SMITs and LPTs is akin to the one of SMTs and cartesian
theories: the theory of comonoids (Example [.3(b)) is the SMIT corresponding to the
empty LPT (@, @); the theory of lax bialgebra (Example[3.3(d)) is the SMIT corresponding
to the LPT of commutative monoids (Example [3.3(a)).

An important difference between lax product theories and cartesian theories is that
generators in ¥ can have arbitrary coarity, not necessarily 1 as is the case in any cartesian
theory. Indeed, the presence of finite products eliminates the need for coarities other
than 1, since to give an arrow X™ — X" in a cartesian category is to give an n-tuple of
arrows X — X, obtained by composing with the projections. In a lax product category,
instead, this is not the case. As we shall see below, the category of relations can be
considered as a source of models for a lax product theory and it is clearly not true, in
general, that relations X — X" are determined by their projections.

The notion of lax product prop will be formalised in the next subsection. For the
moment, the reader can think of these structures as ordered props where objects are
equipped with a comonoid structure and arrows are lax comonoid homomorphism. This
is the case in LPT as shown below.

Theorem 3.5. Let T = (2,I) be an LPT and LP be the lax product prop freely generated
by it. Then everyt : m — n in LP is a lax comonoid homomorphism.

Proof. By Inequations and (31), every generator in ¥ is a lax comonoid homomor-
phism. A simple structural induction extends this property to compound terms:

tr
tl’
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3.1 Lax product structures and lax products

In Section[2.1]we recalled that the monoidal product is a categorical product precisely
when all arrows are comonoid homomorphisms. Here we show that the property of
arrows being lax-comonoid homomorphisms force the monoidal product to be a lax
product, a bicategorical limit. First, we note that the commutative comonoid structure
in any lax product theory is an instance of something we call a lax product structure.

Definition 3.6 (Lax product structure). Given an ordered monoidal category C, a lax
product structure is a choice, for each object C € C, of commutative comonoid (Ac, L¢),
compatible with the monoidal product in the obvious way, i.e.

Acep = (Ac ® Ap) ; (C® ocp ® D) lcep = Lc® 1p,
such that, for every arrow & : B — C, we have
a;ANce < Ag;(a®a) and a;le < Le.

Lemma 3.7. In an ordered monoidal category C, a lax product structure, if it exists, is
unique.

Proof. Consider lax product structures {(Ac, Lc) : C € C} and {(Af, L) : C € C}
which we shall draw ( —«_ , —e )and ( —«__ , —= ), respectively. It follows that, for
all C, we have 1o = J_’C since J_'C < L¢;indeed

I G G

The first equality uses unitality, the second is interchange in a monoidal category, and
the third is (31). Using a symmetric argument, we deduce Lo < Lf. Since the lax
product structure is, by definition, assumed to be compatible with monoidal product
and since Lc = 1, we have Al < Ac by

o

and, again by a symmetric argument, we conclude Ac < A(.. m|
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We will now show that, if an ordered monoidal category has a lax product structure,
then the monoidal product is a lax product, by which we mean the following bicategorical
limit. Given objects m and n, a lax product is an object m X n with projections, that is
arrows zr; : mX n — m, 7, : m X n — n such that, for any f : k — m, g : k — n, there
exists h : k — m X n and 2-cells p;, p, satisfying

m=——mxn——sn (32)
\hj

such that, given any other #’, o1, and o, which verify

50 9]
m<—m><n—>~n
Uy C N\

f k 9

there exists a unique £ : h* = h such that

TT;
m-<""mxn m=——mxn
O]
GG - \z Ik
f k
and
TT
mxn-——n mxXn—-sn

B -7

Theorem 3.8 (Carboni and Walters). Suppose that C has a lax product structure. Then
the monoidal product of C is a lax product.

Proof. The projections are:

def m def .
V50 = T2 =
n
—e n

It is easy to show that the universal property holds. Indeed, given f : k — m and

g : k — n, we see that
k i
h=
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gives us p; and p; since

and, similarly,

Given any b’ : k — m & n with

m m

we have

IA
=
3

Corollary 3.9. Let T be a SMIT. Then in LP, the monoidal product is a lax product.

Proof. By Theorem [3.5|we know that every arrow LPr is a lax comonoid homomor-
phism, thus the monoidal product is a lax product by Theorem 3.8 O

Corollary 3.10. In Rel, considered as a 2-category (the 2-cells are set inclusions), the
cartesian product is a lax product.

Proof. It suffices to show that every relation is a lax comonoid homomorphism. The lax
product structure is then obtained as in the proof of Theorem ]

The appropriate notion of model for a lax product theory is a poset-enriched
monoidal functor that preserves lax product structure, in the sense of Definition
The notion of homomorphism of models is then a lax monoidal natural transformation
between such functors.

More concretely, we define a lax product category to be a symmetric monoidal
category, enriched over the category of posets, that contains a lax product structure in
the sense of Definition A lax product prop is both an ordered prop and lax product
category. A lax product functor is a poset-enriched functor that preserves the lax product
structure. Fixing a lax product category C, models for an LPT T are lax product functors
F: LP7 — C, and homomorphisms are lax monoidal natural transformations.

In order to avoid duplication, we postpone a more comprehensive discussion to
Section [4] and first introduce Frobenius theories, which are a particularly interesting and
expressive variant of lax product theories.
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4 Frobenius theories and their models

In this section we introduce the main contribution of this work: Frobenius theories
and their models. To this aim we recall the concept of cartesian bicategories of relations
from [[18]] and flesh out some of their properties.

Recall that an arrow f : B — C in a 2-category has a right adjoint g : C — B when
there exist 2-cells  : idg — f;gand¢: g; f — idc satisfying the well-known triangle
equations. In the poset-enriched case, this simplifies to requiring merely

dp<fig  g;f<ide. (33)

In Section 3| we saw a particular emphasis on the SMT of commutative comonoids

(Example[2.3[b)). According to (33), to define adjoints to the generators { —«_ , —e },in
a lax product theory, it suffices to add generators { “»— , e— } and inequations of (4).

Next, recall from Example that the SMT F of special Frobenius monoids has,
as set of generators, { “»—, e—, —« , —e } and, as equations, those that guarantee
that the generators above form, respectively, a commutative monoid and commutative
comonoid, together with the Frobenius equation and the special equation:

oS o

Succinctly, cartesian bicategories of relations are lax product categories where the lax
product structure has right adjoints (a commutative monoid), satisfying the equations
of special Frobenius monoids. We spell out the details below.

Definition 4.1. A cartesian bicategory of relations is a poset enriched category that is
symmetric, monoidal, and satisfies the following conditions.

1. For every object n, there are arrows A, : n — n@® n and !, : n — I, graphically
denoted by —{_ and —e forming a cocommutative comonoid.

2. For every object n, there are arrows V, : n®n — n and ?, : I — n, graphically
denoted by “» and e— , forming a commutative monoid.

3. The monoids and the comonoids satisfy the five inequations:

D”H"C < - (34)

o< A (35)
ido

(36)
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(37)

4. Every arrow R : m — n is a lax comonoid homomorphism:

e < (39)
lﬁ—i < — o (40)

Inequations and state that —«_is the left adjoint of - , while Inequa-
tions (36) and (37) state that —e is the left adjoint of e— . Note that Equation (38) is
Equation of Example [2.3{c) describing the SMT of special Frobenius algebras; its
other Equation holds in any cartesian bicategory of relations: one direction is given
by and the other is proved as follows.

:
!

Therefore, we will often refer to the monoid and the comonoid of a cartesian bicategory
of relations C as the (special) Frobenius structure of C.

Since Condition 4 requires every arrow to be a lax comonoid homomorphism, we
know by Theorem [3.8] that the monoidal product @ is a lax-product. This helps us in
showing that Rel is a cartesian bicategory of relations: indeed, from Corollary
we know that the lax product in Rel is simply the cartesian one. Now for every set X,
Ax : X — X x X is the diagonal relation {(x, (x,x)) : x € X}, Ix : X —> 1 = {e}is
the relation {(x,®) : x € X}, Vx : X XX — X and !x : 1 — X are, respectively, their
opposite relations. One can easily check that the inequations in Condition 3 hold.

A cartesian bifunctor is the notion of structure-preserving homomorphism between
cartesian bicategories of relations. In fact, it suffices to require that the lax product
structure, in the sense of Deﬁnition is preserved, that is, the notion of cartesian
bifunctor is the same as lax product functor. Indeed, the fact that adjoints are preserved
follows from (2-)functoriality, since adjoints are uniquely defined in ordered categories.

Compact closed structure. In any cartesian bicategory of relations we have a self-
dual compact closed structure. To describe it, we adopt the graphical notation:

-
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For an intuition consider Rel: it is easy to check that R is just the opposite relation of R.
Lemma 4.2. IfC is a cartesian bicategory of relations, then ¥ : C°? — C is a 2-functor:
() id" =id
(ii) (R;S)"T =S ;RT
(iii) R®S)" =R" @ ST
(iv) If we have
—n— ¢ :

then

e

Proof. (i) is easy to check; it is the so-called snake lemma. For (ii):

For (iii):
— =
_ - _
For (iv):

WL

Maps and comaps. By applying Lemma[4.2[ii) and (iv) to Inequations and (40),
one obtains the following two inequations for any arrow R : m — n of a cartesian

O
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bicategory of relations:

< o— (41)

< (42)
D

The inequations below do not in general hold:

¢

N

(SV)

N

T
—{ "RV (TOT)
DD

(INJ)

AL

< o Ay— (SUR)

An arrow R : m — n in a cartesian bicategory is said to be single valued, total, injective,

or surjective if it satisfies , @, , or , respectively. A map is an arrow
that is both single valued and total, namely a comonoid homomorphism. A comap is an
arrow that is both injective and surjective, namely a monoid homomorphism. It is easy
to see that in Rel, these coincide with the familiar notions.

The simple lemma below will be useful in subsequent proofs.

Lemma 4.3 (Wrong way). We have:

=

Proof.

~& - S ey

4
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Lemma 4.4. Consider the four inequalities:

S 43)
N O (49
S (45)

< (46)

An arrow R : m — n is single valued iff holds, total iff holds, injective iff
holds and surjective iff holds.

Proof. V) = @3):

< L

IA

5=
S G

(oM = (@)

IA

@) = (TOT):

— = Ary(rfe = Aoy

& follows as a corollary of < (@3).
(SUR) < follows as a corollary of (TOT) < (44). O
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Corollary 4.5. LetR,S : m — n be two maps. IfR < S thenR = S.

Corollary 4.6 (Span cancellation). An arrow R is single valued and surjective if and only

if it satisfies:
-

Corollary 4.7 (Cospan cancellation). An arrow R is injective and total if and only if it

satisfies:
-

Lemma 4.8. R is a map if and only if it has a right adjoint. Its right adjoint is then RY.

Proof. If R is a map, then it is total and single valued. The fact that it is total gives the
unit (44) of the adjunction and the fact that it is single valued gives the counit (43).
Suppose that R has right adjoint S:

S s 5D el T s IED ol

.
) )
< e
)
Thus, R is single valued, and

e = e = [Py

so R is total. By Lemma R is also right adjoint to R. Thus, by the standard argument,

we have

Then:

IA

O

Corollary 4.9. An arrow R is a comap if and only if it has a left adjoint S; in that case,
we have S = R,

Corollary 4.10. An arrow R is an isomorphism if and only if R~ = R,
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Convolution. We now show that in a cartesian bicategory of relations every hom-set
is a meet-semilattice. Given arrows A : m — n and B : m — n we define the convolution
of A and B, written A @® B, by:

oA, A®B:V, =

Lemma 4.11. Convolution is associative, commutative, idempotent and unital, with unit:

def' o m n
Tmn = miln = —O 6—

Proof. The proof for associativity, commutativity and unitality is trivial using the fact
that (A,!) is a commutative comonoid and (V, ?) is a commutative monoid. For idempo-
tency, observe the inequalities:

Ty - Oy« (o

O

Since @ is associative, commutative and idempotent, it induces an ordering. In the
following we show that this ordering is exactly <.

Lemma 4.12. For all arrowsR : n — m, we have R < T p.

Proof. Consider:

Ty < D < e

Lemma 4.13. R® S =S if and only if S < R.

Proof. Assume R®S =S. ThenR =RO® T > RS = S. Assume S < R. Then
ROS>SD®S=S5 Moreover S=50 T > SOR. m]

Corollary 4.14. The partial order < is a meet-semilattice with top.
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4.1 Carboni-Walters categories and Frobenius theories

In ordinary functorial semantics, any finite product category can serve as a semantic
domain, with the category of sets and functions the default choice. Cartesian bicategories
of relations will serve as the domain for our notion of functorial semantics, with the
category of sets and relations as a particularly useful universe.

We call an ordered prop that is, additionally, a cartesian bicategory of relations a
frop (Frobenius prop) or a Carboni—Walters category. Similarly to how a cartesian theory
results in a Lawvere category, a Frobenius theory results in a Carboni-Walters category.
To formally introduce this fact is convenient to consider the SMIT CW: the signature
Ycw consistsof —«— :1—>2, —e :1—0, » :2—1land e :0 — 1. The
set Icy contains the inequations for comonoids, monoids and — for n = 1. The
ordered PROP freely generated by CW is a cartesian bicategory of relations: for every
natural number 7, the comonoids and monoid are defined analogously to Example [2.5(a).
It is then easy to check that the Inequations (34)-(40) hold.

Similarly to how cartesian theories implicitly contain the SMT of comonoids when
generating props, Frobenius theories implicitly contain the SMIT CW.

Definition 4.15. A (presentation of a) Frobenius theory (FT) is a pair T = (Z,I) consisting
of a signature Y. and a set of inequations I. The signature X is a set of generatorso:n — m
with arity n and coarity m. The set of inequations I contains pairs (t,t’ : n — m) of
Frobenius X-terms, namely arrows of the ordered PROP freely generated by the SMIT
(ZWZcw, lew W Icy) where I cy is the set containing the Inequations and (31) for
each generatoroc : m — n in X.

The Carboni—Walters category freely generated by a Frobenius theory T = (Z,]),
denoted by Fr, is the ordered PROP freely generated by the SMIT (2 W Ecw, I[WIow Wircr).
The latter will be often referred to as the SMIT corresponding to the Frobenius theory (2, I).

Example 4.16.

(a) The SMIT of commutative monoids CM = (X, Ey W E;f[’) from Example a)
can be regarded also as a Frobenius theory. In the corresponding SMIT, (2
Sew,Em W E;jvf W Icw W I cy) one has two monoidal structures which we re-
fer as the white monoid (coming from X ) and the black monoid (coming from
Ycw). Moreover, since Fyy is an CW-category, we have also —( == ( - )T
and —o :=( o— ). Graphically:

—CC =

—o w= 7
It is easy to prove that ( < , —o ) forms a cocommutative comonoid. Observe
that the set Iy consists of Inequations (22)-(25) from the theory of lax bialgebras

(Example [3.3(d)).
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(b) To the previous theory we can add Inequalities (26)—(29) from the theory of
oplax bialgebra (Example [3.3{e)). Since in all these equations, the left- and right-
hand side are Frobenius terms, the result is a Frobenius theory: we denote it by
CM* = Gy, Ey W E;‘f W B°P). Since both inequalities hold, the black and white
structures form a bialgebra. The corresponding SMIT is illustrated in Figure

In Section 6] we will see that this theory can be understood as the result of a more
general construction and that, in a precise sense, it is equivalent to the cartesian
theory of monoids (Example[2.7(a)). For this reason, we will refer to this theory
as the Frobenius theory of monoids. In Section[7, we will show that it provides a
rich algebraic playground.

We can define an appropriate category of models for Frobenius theories in a similar
way to how it is defined for symmetric monoidal and cartesian theories,

Definition 4.17. Given a cartesian bicategory of relations C, a model of a Frobenius
theory T in C is a cartesian bifunctor F : 1 — C. A morphism of models F — G is
a lax-natural monoidal transformation « : F = G. This means that a is a family of
C-morphisms {a, : Fn — Gn}yeN such that, for all f : n — m in 5 g, we have

FnLGn
Ff < Gf

Fm ———Gm
and dym = an ® oy, With ay = idg.
The category of models of T in C and their morphisms is denoted by Modrog (T, C).

Since a cartesian bifunctor is obliged to preserve lax products, it is forced to map the
Frobenius structure of ¥ into the unique Frobenius structure of C that determines the
lax product. When C = Rel, this means that any cartesian bifunctor F : ¥ — Rel maps

— > {(x,(x,x)) : x € F1} —e > {(x,8):x € F1}
o b {((x,x),x) : x € F1} — — {(o,x):x € F1}

where o is the unique element of the singleton set {8} = 1 = (F1)°. Therefore, a model F
is determined by the object F1 and the arrows Fo for all 0 € X. The implications of using
lax natural transformations as model homomorphisms are explained in the next section.

5 Examples of Frobenius theories

In this section, we consider some examples of simple Frobenius theories and their
models. We usually interpret the theory in the cartesian bicategory of relations Rel.
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The theory of sets. We first answer the obvious question: what is the category of
models for the empty Frobenius theory (@, @)? The answer is at first sight surprising:
this is just Set the category of sets and functions. Indeed, a cartesian bifunctor F :
Fo.0 — Rel is uniquely determined by the object F1, which is just a set.

A morphism of models & : F = G is determined by «; : F1 — G1 which is a relation
satisfying the requirement that the following four squares laxly-commute.

id
F1—% + 61 F1—* .~ G1 F2 2% 61 Fo—% < Go
A < A ! < ! v < v ? < ?
F2— G2 FO———> G0 Fl— =Gl Fl—>G1
a1®o idy a1 ai

The inequalities in the two rightmost squares hold for any relations. Instead the inclusion
in the two leftmost squares holds if and only if the relation is a map, and maps in Rel
coincide with functions.

Remark 5.1. Requiring morphisms of models to be strict natural transformations rather
than just lax (as in Definition[4.17) would mean to force the four above inequalities to be
equalities. In this case, a morphism of model would be both a map and a comap, namely
an isomorphism.

The theory of non-empty sets. Let us now consider the Frobenius theory having
empty signature and the inequation:

id) < o—e (47)

Observe that the reverse of is (36). Here, therefore, the so-called bone equation
holds:

o—e = idy

The corresponding SMIT has been studied in [15] 24} 27, [54]). In these works it is proven
that the resulting prop is isomorphic — forgetting the posetal structure — to the prop of
equivalence relations (where a morphism n — m is an equivalence relation on n + m
regarded as a set).

From our perspective, this theory has quite a different meaning. Its models are sets
that contain at least one element: indeed any cartesian bifunctor F to Rel maps 0 to
(F1)%, i.e., the singleton set {o}, the left-hand side of to id(s} = {(e,®)} and the
right-hand side to the relational composition of {(e,x) : x € F1} and {(x, ®) : x € F1}.
It follows that holds if and only if F1 is not empty.

Morphisms are functions, for the same reasons as in the previous example.

The theory of predicates. We start adding symbols to the signature: consider the
theory containing an operation o— :0 — 1 and no equations. A model for this theory
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consists of a set F1 and a predicate F( o— ) C F1. A morphism of modelsa : F = G
is uniquely determined by @; : F1 — G1 which is a function (for the same reason
discussed above) which additionally satisfies the inequality:

id,

FO—=+ G0
F(ERROR) c G(ERROR)
Fl ——> G1
251

To make it more explicit the category of models for this theory is the category of
predicates and predicate-preserving functions.

The theory of pointed sets. We can extend the theory of predicates by requiring o—
to be total and single valued. That is, we impose Inequations and (29). A model for
this theory is a set F1 with a function F( o— ) : FO — F1. Since FO is the singleton set
{e}, this is a pointed set. A morphism of models is a function preserving the point. In
the diagram

idg
FO ——— GO

F(ERROR) < G(ERROR)

F1——G1
251

all arrows are maps and therefore, by Corollary they commute strictly not just
laxly. Observe that the reverse of Inequations (27) and (29) are equations in the SMIT
corresponding to this theory. Therefore we have:

o—e = idy
o = o

With these equations, we can prove that every pointed set is non-empty, namely that
Inequation holds; indeed:

(31)
id = o—e < eo—e

Another simple graphical derivation proves that o— is injective:

o—e
=D F =
Thus, by Corollary [4.7] we have the (white) bone law

o—o0 = idy (48)
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where, as in Example a), —o :1— 0 is the notation for o— .
The last property that we are going to show is:

s P

The above equation proves that the Carboni-Walters category generated by the Frobe-
nius theory of pointed sets is isomorphic (disregarding the posetal structure) to the prop
of partial equivalence relations studied in [54].

The theory of binary relations. We now consider the theory containing an operation
R :1 — 1 and no equations. A model for this theory consists of a set F1 and a relation
FR € F1 X F1. A morphism of models « : F = G is determined by «; : F1 — G1 which
is a function that satisfies the inequality:

Fo —2 G0

FR

N

GR

F1—G1
[251

This simply means that the function a; preserves the relation R: if (x,y) € FR, then
(a1(x),1(y)) € GR. The category of models is, therefore, the category of binary
relations.

The theory of partial orders. The category of partial orders and monotone maps
can be obtained as the category of models of a Frobenius theory : the signature consists
of a single symbol : 1 — 1 representing a relation and the three inequations
below impose reflexivity, transitivity and antisymmetry:

< g (49)
- < (50)

hl

(51)

.iﬂ
N
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In Inequation (51)), : 1 — 1 is the inverse relation of formally defined

as T, Graphically:
i

It is easy to see that a model for this theory is exactly a set equipped with a relation
that is a partial order. By spelling out the definitions of morphism of model, the same
arguments of the previous example applies: a morphism is just a function that preserves
the relation, namely a monotone function. The category of models is thus the usual
category of posets and monotone functions.

Remark 5.2. Modifying the above, one obtains many familiar theories. For instance, by

replacing antisymmetry (Inequation (51)) by symmetry ( < ) one obtains
equivalence relations. By dropping it, one gets pre-orders.

The theory of deterministic automata. A deterministic automaton (DA) on a finite
alphabet A consists of a triple (X, ¢, f), where X is a set of states, ¢t : X — XA is
the transition function and f C X is its set of final states. Given DAs (X3, 1, f1) and
(Xa, ta, f2), a function h : X; — X, is a simulation if (1) h(f;) C f> and (2), for all x € X,
and a € A, h(t1(x)(a)) = t;(h(x)(a)).

We now introduce a Frobenius theory DA for deterministic automata and simula-
tions. The signature consists of two symbols f : 1 — 0O and ¢t : 1 — |A|. The set of
inequations only requires that t is a map: A; (t ®t) < t; Apgand ! < 854

Then models are exactly deterministic automata. Indeed a model F : Fps — Rel
consists of a set F1 (representing the states) a function Ft : F1 — (F1)!4l (the transition)
and a relation Ff : F1 — 1 = (F1)°, namely a predicate (the final states).

Morphisms are exactly simulations. They are functions for the usual reason and the
lax naturality squares

ay ay

F1——G1 F1——G1
Ff < Gf Ft < Gt
FO ———— G0 FIA| — G|A]
idg x|A|

impose, respectively, Conditions (1) and (2) of the definition of simulation.

Remark 5.3. This example suggests that one may use Frobenius theories to express
coalgebraic structures. Indeed, one can encode a function f : X — X" either by having
in the signature a symbol f : 1 — n and imposing the axioms for functions or as
a symbol f : n — 1 and impose the axioms of cofunctions. Then the lax-naturality
conditions make the morphism the expected coalgebra homomorphisms.
Unfortunately, one can express only coalgebras for functors of the shapes F(X) = X",
which are usually not particularly interesting: the final coalgebras is always the one
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element set 1. More interesting functors, such as F(X) = X X X + 1 (finite and infinite
trees), cannot be expressed in our framework: intuitively we are missing the coproduct +.

The theory of non-negative monoids. Recall the Frobenius theory of monoids CM*
from Example [4.16[b). It is now easy to see that its models in Rel are simply ordinary
monoids in Set, and morphisms of models are just monoid homomorphisms.

By adding to CM™ the inequation

~po < :g (52)

we obtain the theory of non-negative monoids. These are monoids (X, +, 0) with the
additional property that, for all x, y € X, if x + y = 0, then x = 0 and y = 0. Note that the
string diagrams on both sides of are Frobenius terms: the definition of the white
counit requires the Frobenius structure.

6 From cartesian theories to Frobenius theories

In Example a) we introduced the cartesian theory of commutative monoids
CM. In Example [4.16[b) we showed that the Frobenius theory of commutative monoid
CM" is obtained from CM by adding inequality of oplax bialgebras, that forces the
(white) monoid structure to be an oplax (black) comonoid homomorphism. Since in any
Frobenius theory, the generators are implicitly forced to be lax comonoid homomorphism
(inequations and (31)), one has that in the SMIT corresponding to CM™, as in the
SMT corresponding to CM, the white monoid is a strict black comonoid homomorphism.

This construction can be generalised as follows: given any cartesian theory T =
(2, E) one builds the Frobenius theory T* = (3, E W E°? W [ cy) where Iprcq consists
of the two inequalities

: (53)

—e
—
—e

< fol-
<50C (54)

for each generator 5O} : n — 1 in the signature =. The two theories are closely
related: indeed, the category of cartesian models for T in Set is isomorphic to the
category of Frobenius models for T* in Rel.

One can further generalize by replacing Rel with an arbitrary cartesian bicategory
of relations C and Set by its category of maps Map(C), which is defined to be the sub-
bicategory of C having as arrows the maps of C. Indeed, Map(C) has finite products.

Proposition 6.1 ([18| Theorem 6.1(i)]). Let C be a cartesian bicategory of relations. Then
Map(C) is a cartesian category.
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We can now state the main result of this section.

Theorem 6.2. Let T = (3,E) be a cartesian theory and T* = (3, EW E°? W Iprcy). Then
MOdFROB (T+, C) = MOdCAR(T, Map(C))

Proof. This theorem can be proved in several ways. We give a concrete proof that uses
the intuitions developed so far for models and their morphisms.

A cartesian bifunctor F : F+ — C is uniquely determined by: (a) the object F1in C
and (b) arrows Fo in C for any generator o € 3. Inequations and force each of
the Fo to be a map, namely an arrow in Map(C). The same data uniquely determine a
cartesian functor F : L1 — Map(C).

For morphisms, observe that « : F — G of Frobenius models is uniquely determined
by an arrow of C ¢; : F1 — G1 that is a map (recall from Section [5| the example
of the theory of sets). The morphism « is additionally required to be a lax natural
transformation, but since all the Fo are maps then, by Corollary [4.5 this just means
that « is a (strict) natural transformation. This data uniquely induces a morphism of
cartesian models. ]

Thus Frobenius theories are at least as expressive as cartesian theories. The examples
of non-empty sets, predicates, binary relations, partial orders, DAs and non-negative
monoids in Section 5| show that Frobenius theories are strictly more expressive than
classical (cartesian) algebraic theories. In the remainder of this paper, we explore several
Frobenius theories arising from well-known cartesian theories.

7 'The theory of commutative monoids

In this section we explore the algebraic properties of the Frobenius theory of commu-
tative monoids CM" introduced in Example [4.16[b). Its SMIT is illustrated in Figure

Observe that the white monoid and the black comonoid form a bialgebra structure
(Example [2.3(d)). This has two interesting consequences. First, by Lemma [4.2[iv), we
have that also the black monoid and the white comonoid give rise to a bialgebra. Second,
we have that both ©»— and o— are total and single valued. By Lemma(4.4] we have
the inequalities:

< (55)
o < —— (56)
idg € o0—o0 (57)

—0 00— < —— (58)

By using Lemmal4.12] it is easy to see that T»— is surjective:

:jo—fjo—ze— (59)
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Black commutative comonoid

—0C O T —

Black commutative monoid

D0 v e e —

White commutative monoid

Do T P P —

Black adjoints

Black special Frobenius algebra

DS

e

}—C:
:>>_.=:: O—C:

o—e =id0

o—
o—

Figure 2: The SMIT corresponding to the Frobenius theory of commutative monoids.
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Thus, by Corollary [4.6] we deduce the white special law:

4 o— = — (60)

As in the theory of pointed sets, o— is injective; indeed:

D—:Hﬁ’;'zo— (61)

Thus, by Corollary[4.7] we deduce the so-called white bone law:
o—o0 = idy

Observe that the inverse inclusions for (59) and (61) hold by (41) and (42). Therefore:

eo— = o
g)—zo—

These two equations can be weakened to some extent. For the latter, we have:

et el e

= - o o (62)
o

The “colour-swapped” version below holds only laxly by Lemma [4.12}

?}—S—o&—

In any model with carrier X, the other inclusion would mean that for all x, z € X, there
exists y such that x + y = z. Later we will show that this holds for abelian groups.

Another interesting law which can be derived in the theory of commutative monoids
is the black bone:

o—e = idy (63)
Indeed, the left-to-right inequation is just (36). For the right-to-left, observe that:

(31)
id = o—e < eo—e
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Recall that does not hold in the theory of sets: the empty set does not satisfy it.
Intuitively, states that every commutative monoid has a non-empty carrier set;
indeed, it must contain at least the unit element.

The pair of white-monoid white-comonoid forms a lax Frobenius structure. This is
proved as follows:

2 Ot o C O @

Lemma [4.2(iv) then implies:
< DC (65

The pair of white monoid-comonoid forms a lax bialgebra. We have seen that
holds. The other laws only hold laxly:

R 28

Note that the other direction does not hold in general for monoid: it would mean that
every monoid is non-negative (see Section5). The remaining rule can be proved by
using the lax Frobenius equations thus:

: < >
o 8

Do dC @ oC

Again, the inverse inequation does not hold in general for monoids. We will see in
Section [§|that it holds for abelian groups.

AR
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The two laws below state that the black multiplication laxly distributes over the

white multiplication:

Observe that (66) is an instance of (42), while can be obtained simply by precom-
posing with a permutation. The inverse inequation does not hold.
Another law, which is useful in several occasions, is

<

which can be derived by:

( ¢ bialgebra

(38) naturality

(o=

Additive arrows. We now study general properties of the arrows in F¢y+. An arrow
R :m — nis said to be additive if it satisfies the two inequations:

s T o
< o[-

(69)

1=+

o—
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In Rel, a relation R is additive when it is closed with respect to the structure of a monoid
(X, +,0), that is: (a) if (x1,y;) € R and (x2,y2) € R, then (x; + x2,y; + y2) € R and (b)
(0,0) € R for all x1, x2,y1, Y2 € X.

An additive arrow is, therefore, an oplax white monoid homomorphism. The fact
that it is also an oplax white comonoid homomorphism easily follows from the fact that
white multiplication and unit are maps. Indeed:

O R

? oy ? [Py

Lemma 7.1. IfR is additive, then R' is additive.

NZ

Proof. Trivial by using the inequations above. m]

Lemma 7.2. Let R and S be two arrows.
IfR and S are additive thenR ;S and R ® S are additive.

Proof. Trivial by definition. m]
Proposition 7.3. All arrows in Fcy+ are additive.

Proof. The proof proceeds by induction on Fry+. For the inductive cases, we use
Lemma 7.2} For the base cases, we proceed with a case analysis. We show the cases for
both >, o—, —«_ , —e and e, e~ , —< , —o . The latter are redundant by
Lemma [7.1] but this extended case analysis will turn out to be useful later on.

3}?%<§} o— < go—

e For —p—:

o For o—:
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o« For —« :

Gl S =P

— e .
< <
< 3}—0 idy € o—e

o For —e:

The inequations that we have displayed so far are rather trivial. Those for their opposite
are much more interesting.

« For
S .
o For e :
:)0/<0— o— < o—
o« For —( :
o T T e ol
« For —o:

—o .
< <
< 3}—0 idg € o—o

O

Remark 7.4. The second sets of inequations in the above proof contains several of those
that we have proved in the main text of this section, e.g., the lax bialgebra for the white
structure. Observe that these follow from Lemma7.1]and the first sets of inequations.
This is a more efficient and more structured way to prove those laws. We decided to
keep the direct derivations for the sake of exposition.
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White convolution. Previously we showed that in any cartesian bicategory of re-
lations, every hom-set carries a meet-semilattice structure. In Fy+ this is actually a
lattice. Given arrows R : m — nand S : m — n we define the white convolution of R
and S, written R @ S, by:

Lemma 7.5. Convolution is associative, commutative, idempotent and unital. Its unit is:

def m n
Llmn = —0 O—

Proof. The proof for associativity, commutativity and unitality is trivial. For idempo-
tency, we use Proposition|[7.3}

~Fo—? <> Oy

N
0 o o o 7
? Oy
K

O

Since @ is associative, commutative and idempotent, it induces an ordering. In the
following, we show that this ordering is exactly <.

Lemma 7.6. For all arrowsR : n — m, we have L., < R.

Proof.

~o @ oo T [

Lemma 7.7. R@ S =R if and only if S < R.

Proof. Assume R@S = R. Then S = L @S < R@S = R. Assume S < R. Then
R©2S<RQR=R Moreover R=RQ L<R®S. O
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Corollary 7.8. The partial order < is a lattice with top and bottom.
The following fact holds in any lattice.
Lemma79. RO(SQT) > (ROS) @ (RDOT) andRQ(SOT)< (RDS) D (RQT).
Two other useful properties are displayed below.
Lemma 7.10. (R@S);T> (R;T) @ (S;T) andT;(R®S) > (T;R) @ (T;S).
Proof. It follows immediately from the fact that R, S and T are additive. ]
Lemma 7.11. (R©S)" =R" © §T.
Proof. Trivial by definition. m]
Involution. For every arrow R, we define R° as the arrow that is obtained by switching
white and black coloring. To be more formal (-)° : Foy+ — Fom+ is the unique
symmetric monoidal functor switching black and white colouring. This can be defined

inductively: (R;S)° = R°;S° and (R® S)° = R° @ S° and for the base cases it is just the
switching of colours, e.g., ( —« )° = —C .

Lemma 7.12. The functor (—)° is involutive: (R°)° = R.

Proof. Trivial by definition. O
Lemma 7.13. (R S)°=R°® S° and (RO S)°=R°© S°

Proof. Trivial by definition. m]

Observe that (—)° does not preserve the posetal structure. Indeed, it is not true in
general that R < S entails that S° < R°. Take for instance the black Frobenius equation:
we know that the white Frobenius only holds laxly. We will see in Section [§| that the
involution operator satisfies this property in the context of abelian groups.

The algebra of additive relations. Our set of operations
Ta J—s @5 @5 (_)T) (_)Oa 5 ld

is similar to the algebra of relations [34]]: full relation, empty relation, intersection,
union, inverse, complement, composition and identity relation. While the allegorical
fragment [29] (given by the black structure)

oo (Y 5 id
coincides exactly with the one in the algebra of relations, the remaining part
4 Q, (_)O

is not exactly the same: L is not the empty relation and @ is not the union.
We believe that the connection with relational algebra is worth exploring further.
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Antipode

10

Figure 3: The SMIT corresponding to the Frobenius theory of abelian groups is exactly
that of Figure |2 together with the above axioms.
8 The theory of abelian groups

Recall the cartesian theory of abelian groups AG (Example [4.16[b)). In this section
we study the Frobenius theory AG* obtained by adding to AG Inequations (26)—(29)

of Example [3.3(e) (oplax bialgebras) and the following two inequalities stating that the
antipode is a map (single valued and total):

H<:: = v (70)
<

—o < e (71)

The corresponding SMIT is shown in Figure|3] As usual, we adopt the graphical

convention:
- =)

One may demonstrate that the antipode is its own inverse by the derivation

- unitality C._.} @
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unitality

i (72)

which immediately implies that the antipode is injective and surjective and, by Corol-
lary[4.9] that —¢ll— = —M— . This fact justifies adopting the graphical notation:

B =B - 4

We now investigate how the antipode interacts with the white monoid. The following
derivation shows that it distributes over the white unit:

O—.O—O—QO_}@O—.—U?’)

The same happens for the white multiplication. To show this, recall the “De Morgan”

property:
:>>—r = o (74)

First, we prove (74):

j:)—r )O—I—I—DD—
piie e

Now, it follows that:

In other words, the antipode is additive.
A useful “quasi-Frobenius” interaction between the white and black structures is:

?O = AOC; (76)
To see this, let:
D T s D
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Now it is easy to show that A; B = B; A = id,. By the conclusion of Lemma it
follows that

LRy - (]
which is just (76).

Another important law is

oo =od g (77)

which follows from (76) by:

IS

O—CC_: Frobenius unit_ality .—C

Proposition 8.1. White monoid and comonoid form a Frobenius structure.

Proof. Since the black structure is Frobenius, it suffices to show:

ﬁ— unltahty ﬁ

An alternative presentation. Thanks to Proposition|[8.1] it is easy to see that all the
(in)equations in Figure[4hold in Fg+. Actually, one can prove that the ordered PROP
freely generated by the SMIT in Figure |4]is isomorphic to F,g+: it is enough to define
the antipode as either of the following (equivalent) terms

B

assoc1at1v1ty

O



Poly. J. Math. 2 (6) 45

and check that the (in)equations in Figure|3|are entailed by those in in Figure [4] From
the isomorphism, it follows that F,g+ is an abelian bicategory [18].

Involution. Involution on Fry+can be easily extended to Fg+ by defining
()% == m—.

Now, the fact that white monoid and white comonoid form a special Frobenius algebra
gives us the following important proposition.

Proposition 8.2. R < S if and only if R° > S°.

Proof. Tt is enough to check that, for each of the inequation R < S in the axiomatization
in Figure 3] R° < $° holds. O

The above proposition can be used as an effective proof technique. For instance, to
prove that

QP = —e o—

it is enough to recall Equation and apply Proposition [8.2]

Since the antipode is a homomorphism of the white monoid (see and (75)), it
is an additive arrow. By induction and Lemma one can easily prove that all the
morphisms in Fg+ are additive. As a consequence, all the results about @, L, ®, T,
and (—)° proved for commutative monoids, still hold for abelian groups. Observe that
these operators do not form a Boolean algebra as @ and @ distribute over each other
only laxly. Other axioms of Boolean algebras that fail are R® R° = L and R@ R° = T:
to see this, it is enough to take R = id.

Antipodal arrows. Since the white structure forms a special Frobenius algebra,
it induces a compact closed structure and a contravariant monoidal 2-functor (-)*
mapping every arrow R to

RF = S n

In order to prove R¥ = R, we will show that it is sufficient for R to be antipodal, that is

)y < Ay

which entails

So R is antipodal if and only if it is an homomorphism with respect to the antipode.
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Black commutative comonoid

A e e G

Black commutative monoid

White commutative monoid

D00 o P - P —

White commutative comonoid

el
B S U
o
.

—0C - —C L — -

Bialgebra

P -

o—e =id0

e

o—
o—

Black Frobenius algebra

White Frobenius algebra

eS| |2 S

Adjoints
e—e =< ,‘do < 0—0 —0 o0—

—( e

IN
IA

|
|
!

Figure 4: An alternative presentation for the SMIT of abelian groups.
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Proposition 8.3. IfR is antipodal, then R" = R¥.
Proof.

iff O—B— < o—— (Single Valued)

— < oy o < O -
i]_‘f>o—®—< (Total)

— e w — -
iff M < q = (Surjective)

< e 7 < —
iff —B—o < —o (Injective)

Proof. Since R is antipodal, by Proposition R" = R*: we can refer to the black and
white compact closed structure as the same thing.
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The axioms of cartesian bicategories imply that R is a lax black comonoid and lax
monoid homomorphism. This fact, together with the black Frobenius structure was used
in Lemma[4.4]to establish the iff between the first two columns in the four rows above.

Since R is additive and has zero, it is a oplax white monoid (by definition) and an
oplax white comonoid homomorphism (Lemma [7.1).

To prove the iff between the third and the second column, it is enough to repeat
exactly the same proofs of Lemma [4.4] by exchanging colours and the direction of <
and >. For instance, the iff between the second and the third column in (Single Valued)
can be retrieved by the iff between the second and the first column in (Surjective). O

Proposition 8.5. All arrows in Fug+ are additive and antipodal.

Proof. By induction. The cases are given by Lemmal[7.2] and can be easily extended to take
into account antipodality. For the base cases, one can just use those of Proposition|7.3]
and observe that every operation of the theory is an antipode homomorphism. m]

Cancellation. We conclude this section by introducing the cancellation proof tech-
nique that will be useful for proving properties about modules in the next section.

Proposition 8.6. Let R and S be arrows in Fpg+ and X be a map. If

—CE - <o

then
Proof.
unitality X is total h
= = 0
by :
(21)
assumption
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9 The theory of R-modules

Let R be a ring. In order to avoid the distinction between left and right modules,
we assume R to be commutative. We now illustrate the Frobenius theory of modules
over R.

All we have to do is to follow the standard recipe of extending the theory of abelian
groups with a scalar operator : 1 — 1 for each k € R, impose the usual four
axioms for modules and, additionally, require that scalars are maps. The inequations (of
the corresponding SMIT) are summarised in Figure[5} We call the underlying Frobenius
theory MOD}, and the freely generated Carboni-Walters category Fuopy -

At first, we observe that the following two important equalities hold:

{D- = — o

They can be proved by using Proposition[8.6|and the two derivations:

R Uk o

These two simple facts entail that the Carboni-Walters category for the theory of abelian
groups is isomorphic to the one for the theory of modules over the ring of integers Z.

Theorem 9.1. Fac = Fyops -

Observe that every scalar is — by the (in)equations in Figure 5| — total and single
valued. Usually, they are not injective and surjective. However if R is a field, every
non-zero scalar k is both injective and surjective:

1/K

I

I
>
v,

(78)
By Corollary [4.9] this means that:

-&F = 4»- . (79)

This is what happens in the category IHg of Interacting Hopf algebras over R [13].
Theorem 9.2. IfR is a field, then THg = Fuont -
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Black commutative comonoid
Black commutative monoid
White commutative monoid

Black adjoints

Do GIC — e

IA

Black Frobenius algebra

e

Bialgebra Antipode

S - e

B = e S -

o—e = id, ———e - —o
Scalars

Figure 5: The SMIT corresponding to the Frobenius theory of R-Modules.
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Proof. Tt is enough to check that all the equations in Figure [5|entails those in axioms of
IHR and vice-versa. O

Since modules over a field are just vector spaces, we obtain a surprising result.

Corollary 9.3. IfR is a field, then Modrrog (IHR, Rel) is the category of vector spaces
and linear maps over R.

We conclude our work with an observation.

Field of fractions. Now we assume R to be an ideal domain. Note that this is not
necessarily principal as required in [13].

Since R is an ideal domain, we can build its field of fractions FR(R): elements are
pairs p/q of elements of R with g # 0 quotiented by the equivalence = defined as
p1/q1 = p2/q2 if and only if p; X g2 = p2 X g1. Sum and multiplication are defined as
P1/q1 + p2/q2 = p1 X 2 + p2 X q1/q1 X g2 and p1/q1 X p2/qa = p1 X p2/q1 X 2. In the
following, we will often use the morphism of rings (—)/1 : R — FR(R) mapping any
k € Rinto k/1.

We now show that the theory of modules over FR(R) can be retrieved by the one of
modules over R by additionally requiring that every non-zero scalar is both injective
and surjective. To be entirely formal, we call MODISg the theory MOD}, extended with
the inequations

(DUF <

< (80)

for each scalar [ € R different than 0.

Theorem 9.4. Let R be an ideal domain. Then ?—M(@DFR(R) = FMoDISg -

Proof. As a first step, we define a cartesian bifunctor 1 : Fyoprs, — TM@D;R(R) by
induction. The inductive cases are given by the fact that it should preserve ; and &. For
the base cases, 1 maps the scalars along (—)/1 : R — FR(R) and for all the others, it
behaves as the identity.

To prove that this is well-defined, we check that, for all R, S € Fvopisg,
if R < S, then 1(R) < «(S). (a)

To prove this, it is enough to check that (&) holds for each of the inequation of MODISk.
For inequations that do not involve scalars, @ is trivial. For the axioms that do involve
scalars, we have two cases:

(a) ER < S is an axiom in (80), then it holds in TM@D;R(R) by since FR(R) is a
eld.

(b) If R < S is an axiom in Figure [5| then it holds since (-)/1 : R — FR(R) is a
morphism of rings.
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The next step is to define k : TMODFMR)

cases are fixed. For the base cases, k maps each scalar p/q € FR(R) into

— Fumopisg by induction. Again the inductive

1;Cl

and, for all the others, it behaves as the identity. Observe that = is preserved by «k: if
P1/q1 = p2/q2, then p1q2 = p2q;1 and therefore

PO
PID-@H@ = P@

= —PH92H@x (1

Again, to prove that « is well defined, it is enough to inspect the axioms concerning the
scalars in Figure 5| For a scalar p/q € FR(R), the first axioms of the first and second
rows hold in Fyoprs,, since ¢ # 0 and entails that is a black comonoid
homomorphism. For the same reason, @} is also a white monoid homomorphism and
thus it is easy to see that also the second axiom of the second row also holds in Fviopisy-
The remaining axioms are easily proved using the definition of sum and multiplication
in FR(R).

To conclude it is enough to prove that 1 o k = id and k o 1 = id. For both, the proof
proceeds by induction. The only interesting cases are the scalars: for k o1 = id, the proof
is straightforward; for 1 o x = id, the proof uses that holds in Fyop+ O

FR(R)
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