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Abstract

We introduce the concept of Frobenius theory as a generalisation of Lawvere’s

functorial semantics approach to categorical universal algebra. Whereas the universe

for models of Lawvere theories is the category of sets and functions, or more

generally cartesian categories, Frobenius theories take their models in the category

of sets and relations, or more generally in cartesian bicategories.

1 Introduction and roadmap
There has been a recent explosion of interest in algebraic structures borne by ob-

jects of symmetric monoidal categories [35], with applications in quantum founda-

tions [1, 19, 21], concurrency theory [7], control theory and engineering [2, 14, 3],

linguistics and formal language theory [46, 49, 48], database theory [9] and probability

theory [30] amongst others. In several cases these “resource-sensitive” algebraic theo-

ries are presented using generators and equations. Moreover, many contain Frobenius

algebra [18] as a sub-theory, which yields a self-dual compact closed structure and

gives the theories a relational flavour, e.g. a dagger operation, which one can often

think semantically as giving the opposite relation. In this paper we propose a categorical
universal algebra for such monoidal theories, generalising functorial semantics, the

classical approach due to Lawvere. A notion of model clarifies the conceptual landscape,

and is a useful tool for the study of the algebraic theories themselves. For example:

how can one show that a particular equation does not hold in a theory? Reasoning
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directly with an equational theory can be difficult, since showing that an equation is

not derivable from a set of axioms using equational reasoning is often difficult. Instead,

one obvious way is to find a model where the equation does not hold.

1.1 Functorial semantics
Lawvere categories [39] (also known as finite product theories) are a standard

setting for classical universal algebra. Syntactically speaking, terms are trees where

some leaves are labelled with variables, and these can be copied and discarded arbitrarily.

Categorically, this means a finite product structure, and (classical) models are product
preserving functors. In particular, to give the classical notion of model as a set, together

with appropriate 𝑛-ary functions, satisfying the requisite equations, is to give a product

preserving functor from the corresponding Lawvere category to the category of sets and

functions L → Set. This methodology is commonly referred to as functorial semantics.
For example, commutative monoids are exactly the product preserving functors from

the Lawvere category of commutative monoids, abelian groups the product preserving

functors from the Lawvere category of abelian groups, etc. Moreover, the usual notion

of homomorphism between models is given by natural transformations between models-

as-functors.

Specification algebraic theory

Syntax trees

Category Lawvere category (finite product category)

Models product preserving functors

Homomorphisms natural transformations

In applications, classical algebraic theories are often not the right fit. Sometimes this

is because an underlying data type is not classical, e.g. qubits, that cannot be copied.

Other times it’s because one needs to be explicit about the actual copying and discarding

being carried out as (co)algebraic operations, instead of relying on an implicit cartesian

structure. That is, we require a resource sensitive syntax. In practice, this means replacing

algebraic theories with symmetric monoidal theories (SMTs), trees with string diagrams,

cartesian product with symmetric monoidal product (Lawvere categories with props),

and product preserving functors with monoidal functors. This suggests an updated

table:

Specification symmetric monoidal theory (SMT)

Syntax string diagrams

Category prop

Models symmetric monoidal functors

Homomorphisms monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,

such that𝑚 ⊕𝑛 =𝑚 +𝑛. Of course, any Lawvere category is an example of a prop, since
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the cartesian structure induces a canonical symmetry. Arrows of (freely generated)

props seem, therefore, to offer an attractive solution to the quest for resource sensitive

syntax. Given that the underlying monoidal product is not assumed to be cartesian,

props give the possibility of considering bona fide operations with co-arities other than

one, e.g. the structure (comultiplication and counit) of a comonoid. In fact, comonoids

are the bridge [28] between the classical and the resource-sensitive.

Roughly speaking, given an algebraic theory, we can regard it as a symmetric

monoidal theory by “encoding” the cartesian structure with comonoids. More precisely,

one introduces a commutative comonoid (copying) and equations making all other

operations comonoid homomorphisms:

f
n

f

f

n
= f

n
=

n
(1)

This leads one to observe that, as props, the following are actually isomorphic:

Lawvere category LCM of commutative monoids CM
�

prop PB of (co/commutative) bialgebras B

Thus, in effect, bialgebras are what one gets by considering classical commutative

monoids and taking resource sensitivity seriously. Similarly, Hopf algebras can be seen

as abelian groups in a “resource sensitive” universe:

Lawvere category LAG of abelian groups AG
�

prop PH of (co/commutative) Hopf algebras

The structure of props suggests that, for models, we ought to look at symmetric

monoidal functors. Indeed, considering the monoidal category of sets and functions Set
(with cartesian product as monoidal product) as codomain, the symmetric monoidal

functors from the prop of commutative monoids are in bijective correspondence with

ordinary commutative monoids. Here it is the products of Set that ensure that, although

the theory is non-cartesian, the models are classic. Similarly, commutative monoids

are captured by symmetric monoidal functors PB → Set; it is not difficult to show that

the only comonoid action on a set is given by the diagonal, so the “copying” comonoid

structure is uniquely determined in any Set-model of PB.

1.2 Relations as a universe for models
Our goal is to study algebras of relations, e.g. relational algebra, allegories, Kleene

algebra, automata, labelled transition systems, etc. We are therefore interested in

developing a theory of functorial semantics that takes its models in the monoidal

category Rel× : objects are sets, arrows are relations, and the subscript indicates that we

take cartesian product as monoidal product.
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Here mere props and monoidal functors are not enough to characterise commutative

monoids. Considering the prop of commutative monoids, monoidal functors to Rel×
are not guaranteed to give a functional monoid action: e.g., one could map the monoid

action to the opposite of the diagonal relation. Considering the prop of bialgebras fails

also: there is no guarantee that the comultiplication maps to the diagonal. For a concrete

example, consider:

1 ↦→ N ∇ ↦→ + = 𝜆(𝑥,𝑦) : 𝑋 × 𝑋 . 𝑥 + 𝑦

⊤ ↦→ 𝜆𝑥 : {★} : 0 Δ ↦→ ∇𝑜𝑝
(2)

⊥ ↦→ ⊤𝑜𝑝

Here, the properties of addition of N, a ring without negatives, ensure that the bialgebra

equations are satisfied; in particular, if 𝑥 + 𝑦 = 0, then 𝑥 = 𝑦 = 0.

We could require, for props that have a commutative comonoid structure that defines

a product, that the product structure be preserved, so that Δ is mapped to the diagonal.

Unfortunately, this would preclude considering Rel× as a universe of models, since the

monoidal product in Rel× is not a cartesian product (recall that Rel actually has + as

biproduct). Indeed, when interpreted in Rel, the general form of Equations (1)

R
m n R

R

m
n

n
= R

m n m= 

tells us that 𝑅 is single-valued and total, which is true only of those relations that are

(the graphs
1

of total) functions.

A crucial observation to make at this point is that products play two different roles

in functorial semantics à la Lawvere. The first assures that the underlying data can

be copied and deleted. This means the assumption of a “classical universe” and such

an assumption excludes dealing with quantum data [22, 20]. We will not consider this

aspect in the present paper. The second role is preservation of arities, the idea that

one should be able to specify algebraic operations on a set or an object in a cartesian

category. This second role concerns us here.

In particular, cartesian products are generalized to lax cartesian products, which

Carboni and Walters [18] identified as important for the algebra of categories of relations.

Indeed, the monoidal product of Rel× satisfies a lax universal property. In practice

this turns out to be, bureaucratically speaking, quite a tame notion of laxness: the 2-

dimensional structure of Rel× is posetal (set inclusion), and indeed we will concentrate

on the poset-enriched case. At specification level, this means that it’s natural to introduce

inequations between terms.

1
The graph of a function 𝑓 : 𝑋 → 𝑌 is the relation { (𝑥, 𝑓 (𝑥 ) ) : 𝑥 ∈ 𝑋 } ⊆ 𝑋 × 𝑌 .
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In fact, the most we can say about relations 𝑅, in general, is that they are lax

comonoid homomorphisms:

R
m n R

R

m
n

n≤ R
m n m

≤ (3)

If all arrows are lax homomorphisms in this sense then the monoidal product is a lax

product. Crucially, (3) holds in Rel× , where 𝑋 -comultiplication is the diagonal relation

{(𝑥, (𝑥, 𝑥)) : 𝑥 ∈ 𝑋 }, that is, the graph of the diagonal function. Recall that, in Rel× , the

Inequations (3) are strict exactly when, respectively, 𝑅 is not single valued and not total.

1.3 Lax product theories
By a lax product theory we mean a generalisation of SMT that replaces equations

with inequations, and includes a chosen commutative comonoid structure. Moreover,

we require Inequations (3) that say that all other data is a lax comonoid homomorphism.

We call the comonoid structure together with the aforementioned inequations a lax
product structure. Every lax product theory leads to a free ordered prop (a prop enriched

in the category or posets and monotone maps), where (3) ensure that the monoidal

product is a lax product, in the bicategorical sense.

Specification lax product theory

Syntax string diagrams

Category lax product 2-prop

Models lax product structure preserving functors

Homomorphisms monoidal lax natural transformations

Note that both the SMT of bialgebras and Hopf algebras are lax product theories

(each equation is replaced by two inequations). And we now obtain a satisfactory

“resource sensitive” generalisation of Lawvere’s functorial semantics to Rel-models. For

example, the models of the SMT of bialgebras, given by lax product structure preserving

functors to Rel× , are exactly commutative monoids. This may appear surprising, since

we are mapping to Rel× , one could expect that ∇ may map to an arbitrary relation.

Instead, the fact that we need to preserve lax products means, since ∇ is functional in

the specification, it maps to a function in the model. Moreover, the categories of models

(where morphisms between models are given by monoidal natural transformations)

coincide: both are the category of commutative monoids and homomorphisms. Thus

the problem of (2) is avoided.

Yet lax product theories are not quite expressive enough for our purposes. We have

seen that, using the lax product structure, we can express equationally when a relation

is a function. But we cannot, for instance, say when a relation is a “co-function”, that

is, the opposite relation of a function. This capability is very useful in examples, for

example for the calculus of fractions in the SMT of Interacting Hopf Algebras [13].
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1.4 Frobenius theories
A Frobenius theory — a concept introduced in this paper — is a lax product theory

that includes additionally a “black” commutative monoid right adjoint to the comonoid:

≤ ≤ 
(4)

≤ ≤ id0

In general, a relation with a right adjoint is a function: the two inclusions in the first

line of (4) respectively say that the comonoid operation is total and single-valued; the

two inclusions in the second line that its unit is total and single-valued. The crucial law

that makes the comonoids and the dual monoids into a Frobenius theory is comprised

of the Frobenius equations (first line) and the special inequality (second line):

= = (5)

≤ (6)

The special inequality says that the monoid is single-valued. Together with the reverse

inequality at the top left of (4), it gives the special equality, which says that the comulti-

plication postcomposed with the multiplication is the identity. The Frobenius equations,

on the other hand, say that the multiplication postcomposed with the comultiplica-

tion can be decomposed in two ways, providing two interpolants [46, Section 4]. The

equivalent forms, justifying Lawvere’s attribution to Frobenius [38], assert stability

of inverse images under direct images [42] and allow abstraction in monoidal cate-

gories [44, Theorem 4.3]. Without the constraint that the comonoid is single-valued,

the Frobenius equations in the monoidal category Rel× of relations over sets precisely

characterize abelian groups [43]. In the monoidal category PRel× of relations over

partial orders, they characterize Lambek’s pregroups [36, 46] and play an important

role in modern theory of language and logic [17, 37, 50]. Together with the special

law, the Frobenius equations induce the spider theorem, which implies that the mirror

images of (3) hold, i.e. that, with respect to Frobenius algebras, relations are not only

lax comonoid homomorphisms but also lax monoid homomorphisms:

R
m n

R

R

m
n

m≤ R
m n

≤ 
n

Frobenius algebras with single-valued comonoids, making the monoidal structure

lax cartesian, were studied in the seminal paper [18] by Carboni and Walters. The free
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ordered prop induced by (4) and (5) is what we refer to as a Frobenius prop (frop) or

a Carboni–Walters category. Indeed, it is an example of Carboni–Walters’ bicategory

of relations [18, Section 2]: a cartesian bicategory where the “black” structure satisfies

the Frobenius equations. Discarding the 2-structure yields a hypergraph category (also

known as well-supported compact closed category).

Specification Frobenius theory

Syntax string diagrams

Category Carboni–Walters category

Models lax product preserving functors

Homomorphisms monoidal lax natural transformations

The frop of commutative monoids can be thought of as the prop of bialgebras,

together with an additional commutative “black” monoid. Again, as in the case of lax

product theories, the models in Rel× are ordinary commutative monoids, and the model

transformations are monoid homomorphisms. The example of commutative monoids

generalises to arbitrary algebraic theories: there is a procedure, analogous to that of

producing an SMT from a classical algebraic theory, that results in a Frobenius theory, so

that the models of the relevant Lawvere category in Set are in bijective correspondence

with the models of the Frobenius theory in Rel× . More than that, the categories of

models are equivalent.

But Frobenius theories give us much more that a way of doing “resource-honest”

algebraic theories in Rel× : they are much more expressive and allow us to bring many

new examples into the fold. This paper introduces the basic theory together with a wide

range of examples.

1.5 From Manoa to Punaauia
During 2016 and 2017, the first and third authors made several research visits to the

second author at the University of Hawaii at Manoa. Frobenius algebras had previously

been used as an important tool in categorical models of computation, whether to separate

the nondeterministic from the probabilistic models, and classical from quantum [20, 43],

or to characterize computational bases in vector spaces [23], or as the centerpiece of data

services in categorical computers [45]. The visits brought together our complementary

toolkits. The present paper was drafted as a research report of some of the work that

we did together and it was posted on arXiv in 2017. Although never submitted for

publication, the draft garnered a number of citations, and led to further work, including

four Ph.D. theses [51, 25, 41, 32] and several significant contributions [9, 10, 26, 8, 5, 31, 6]

to theoretical computer science. The use of monoidal structures in theory and practice

computation turned out to be convenient for teaching and led to a monograph [47],

superseding [45] and giving new insights on foundational results of computability

theory, while at the same time making the subject suitable for an undergraduate level

course.

In 2023, while the first author was visiting the University of French Polynesia in

Punaauia, this research culminated in the introduction of the first-order bicategory [4],
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which can be seen as an extension of the Frobenius theory presented in this work,

expanding it into a full first-order framework.

We consider this paper a humble offering of gratitude for the inspiration provided

by Polynesia and its academic environment.

1.6 Structure of the Paper
We recall symmetric monoidal theories and props in Section 2 and explain how

classical algebraic theories can be considered as symmetric monoidal theories, and the

corresponding Lawvere theories as certain props. In Section 3 we extend the picture

to inequational theories, resulting in poset-enriched props. We also identify the cru-

cial concept of lax product structure, which allows us to keep the “arity-preservation”

property of classical models. In Section 4 we introduce the central concept of Frobenius

theory, describe models, and focus on some general properties. In Section 5, we highlight

interesting examples of Frobenius theories, showcasing the expressivity of the frame-

work. In Section 6 we explain how cartesian theories can be considered as Frobenius

theories, without altering the category of models. The last sections are in-depth looks at

three ubiquitous mathematical theories, considered as Frobenius theories: commutative

monoids (Section 7), abelian groups (Section 8), and modules (Section 9).

2 Symmetric monoidal theories and props
Our exposition is founded on symmetric monoidal theories: presentations of algebraic

structures borne by objects in a symmetric monoidal category.

Definition 2.1. A (presentation of a) symmetric monoidal theory (SMT) is a pair T =

(Σ, 𝐸) consisting of a signature Σ and a set of equations 𝐸. The signature Σ is a set
of generators 𝑜 : 𝑛 → 𝑚 with arity 𝑛 and coarity 𝑚. The set of Σ-terms is obtained
by composing generators in Σ, the units id0 : 0 → 0, id1 : 1 → 1, and the symmetry
𝜎1,1 : 2 → 2 with ; and ⊕. This is a purely formal process: given Σ-terms 𝑡 : 𝑘 → 𝑙 ,
𝑢 : 𝑙 →𝑚, 𝑣 : 𝑚 → 𝑛, one constructs new Σ-terms 𝑡 ;𝑢 : 𝑘 →𝑚 and 𝑡 ⊕ 𝑣 : 𝑘 +𝑛 → 𝑙 +𝑛.
The set 𝐸 of equations contains pairs (𝑡, 𝑡 ′ : 𝑛 →𝑚) of Σ-terms with the same arity and
coarity.

The categorical concept associated with symmetric monoidal theories is the notion

of prop (product and permutation category [40]).

Definition 2.2. A prop is a symmetric strict monoidal category with objects the natural
numbers, where ⊕ on objects is addition. The prop freely generated by a theory T = (Σ, 𝐸),
denoted by PT, has as its set of arrows 𝑛 → 𝑚 the set of Σ-terms 𝑛 → 𝑚 taken modulo
the laws of symmetric strict monoidal categories (displayed in Figure 1), and the smallest
congruence (with respect to ; and ⊕) containing equations 𝑡 = 𝑡 ′ for any (𝑡, 𝑡 ′) ∈ 𝐸.

There is a natural graphical representation for arrows of a prop as string diagrams,

which we now sketch, referring to [52] for the details. A Σ-term 𝑛 →𝑚 is pictured as
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(𝑡1 ; 𝑡3) ⊕ (𝑡2 ; 𝑡4) = (𝑡1 ⊕ 𝑡2) ; (𝑡3 ⊕ 𝑡4)

(𝑡1 ; 𝑡2) ; 𝑡3 = 𝑡1 ; (𝑡2 ; 𝑡3) id𝑛 ; 𝑐 = 𝑐 = 𝑐 ; id𝑚

(𝑡1 ⊕ 𝑡2) ⊕ 𝑡3 = 𝑡1 ⊕ (𝑡2 ⊕ 𝑡3) id0 ⊕ 𝑡 = 𝑡 = 𝑡 ⊕ id0

𝜎1,1 ; 𝜎1,1 = id2 (𝑡 ⊕ id𝑧) ; 𝜎𝑚,𝑧 = 𝜎𝑛,𝑧 ; (id𝑧 ⊕ 𝑡)

Figure 1: Axioms of symmetric strict monoidal categories for a prop T.

a box with 𝑛 ports on the left and 𝑚 ports on the right. Composition via ; and ⊕ are

rendered graphically by horizontal and vertical juxtaposition of boxes, respectively:

𝑡 ; 𝑠 is drawn st 𝑡 ⊕ 𝑠 is drawn
t
s

In any SMT there are specific Σ-terms generating the underlying symmetric monoidal

structure: these are id1 : 1 → 1, represented as , the symmetry 𝜎1,1 : 1 + 1 →
1 + 1, represented as , and the unit object for ⊕, that is, id0 : 0 → 0, whose

representation is an empty diagram. Graphical representation for arbitrary identities

id𝑛 and symmetries 𝜎𝑛,𝑚 can be generated inductively, we omit the details here.

Example 2.3.

(a) We write CM = (Σ𝑀 , 𝐸𝑀 ) for the SMT of commutative monoids. The signature Σ𝑀

contains a multiplication : 2 → 1 and a unit : 0 → 1. The equations

below form 𝐸𝑀 and assert associativity (7), commutativity (8) and unitality (9).

= (7)

= (8)

= (9)

(b) Dually, consider the SMT CC = (Σ𝐶 , 𝐸𝐶 ) of commutative comonoids. Its signature

Σ𝐶 consists of a comultiplication : 1 → 2 and a counit : 1 → 0. Its set

of equations 𝐸𝐶 consists of:

= (10)

= (11)

= (12)
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(c) Monoids and comonoids can be combined into a theory that plays an important

role in our exposition: the theory of special Frobenius algebras [18]. This is given

by F = (Σ𝑀 ⊎ Σ𝐶 , 𝐸𝑀 ⊎ 𝐸𝐶 ⊎ 𝐹 ), where 𝐹 consists of the equations:

= = (13)

= (14)

(d) Another fundamental way to combine monoids and comonoids is the theory of

(commutative/cocommutative) bialgebras B = (Σ𝑀 ⊎ Σ𝐶 , 𝐸𝑀 ⊎ 𝐸𝐶 ⊎ 𝐵), where 𝐵

consists of the equations:

= (15)

= (16)

= (17)

= id0 (18)

One can read (15)–(18) as stating that the monoid structure (multiplication,unit) is

a comonoid homomorphism, and vice versa, the comonoid structure is a monoid

homomorphism.

Bialgebras and special Frobenius algebras play an important role in recent research

threads in quantum [19, 12], concurrency [16, 53] and control theory [11, 2, 14].

(e) Another theory that plays a crucial role in the aforementioned works is the theory

H of Hopf algebras. It is obtained from the theory of bialgebra by extending the

signature Σ𝑀 ⊎ Σ𝐶 with the antipode : 1 → 1 and the set of equations

𝐸𝑀 ⊎ 𝐸𝐶 ⊎ 𝐵 with the three equations:

= (19)

= (20)

= (21)

The assertion that CM is the SMT of commutative monoids — and similarly for other

SMTs in our exposition — can be made precise through the notion of model of an SMT.
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Definition 2.4. Given a symmetric monoidal category C, a model of an SMT T in C is a
symmetric monoidal functor 𝐹 : PT → C. Then ModSMT (T,C) is the category of models
of T in C and monoidal natural transformations between them.

Turning to commutative monoids, there is a category Monoid(C) whose objects are

the commutative monoids in C, i.e., objects 𝑥 ∈ C equipped with arrows 𝑥 ⊕ 𝑥 → 𝑥 and

𝐼 → 𝑥 , satisfying the usual equations. Given any model 𝐹 : PCM → C, it follows that 𝐹1

is a commutative monoid in C: this yields a functor ModSMT (PCM,C) → Monoid(C).
Saying that (Σ𝑀 , 𝐸𝑀 ) is the SMT of commutative monoids means that this functor is an

equivalence natural in C.

We can recover classical models by considering symmetric monoidal functors to

Set× , the symmetric monoidal category of sets, where the monoidal product is the

cartesian product ×. Indeed, the functor is determined, up-to natural isomorphism, by

where it sends 1. Concretely, we can consider the image of a symmetric monoidal functor

of this type to consist of the sets of 𝑛-tuples 𝑛 ↦→ 𝑋𝑛def

= {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ 𝑋 }, where

𝑋 = 𝐹1. Then Monoid(Set×) is equivalent to the category of ordinary commutative

monoids and monoid homomorphisms.

2.1 Cartesian theories and Lawvere categories
A cartesian category (or finite product category) is a symmetric monoidal category

where the monoidal product ⊕ satisfies the universal property of the categorical product;

a cartesian functor is a product preserving functor. It is well-known [28] that a symmetric

monoidal category C is cartesian if and only if, for every object 𝑛 in C, there are arrows

Δ𝑛 : 𝑛 → 𝑛 ⊕𝑛 and !𝑛 : 𝑛 → 𝐼 forming a cocommutative comonoid, graphically denoted

by

n
and

n
, and every arrow 𝑓 : 𝑚 → 𝑛 in C is a comonoid homomorphism:

fm n
=

f
f

m
n

n

f
m n

=
m

A Lawvere category [39, 33] is then a symmetric monoidal category that is both cartesian

and a prop.

Example 2.5.

(a) Recall the theory of commutative comonoids CC = (Σ𝐶 , 𝐸𝐶 ) from Example 2.3(b).

The resulting prop PCC is the initial Lawvere category, the free category with

products on one object. The comultiplication : 1 → 2 and the counit :

1 → 0 are the comonoid on 1. For 𝑛 ∈ N, Δ𝑛 : 𝑛 → 𝑛 ⊕ 𝑛 and !𝑛 : 𝑛 → 0 are

defined recursively: Δ0 = id0 and Δ𝑛+1 = (Δ1 ⊕ Δ𝑛) ; (id1 ⊕𝜎1,𝑛 ⊕ id𝑛), !0 = id0

and !𝑛+1 =!1⊕!𝑛 .

(b) The prop of bialgebras PB (Example 2.3(c)) is also a Lawvere category. For every

natural number, the comonoid structure is defined as above. Moreover all arrows in
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PB are comonoid homomorphisms, since (15), (16), (17), (18) say exactly that

and are comonoid homomorphisms.

(c) Amongst the other SMTs in Example 2.3, only H freely generates a Lawvere

category: indeed Equations (19) and (20) state that the antipode is a comonoid

homomorphism.

Definition 2.6. A (presentation of a) cartesian theory is a pair T = (Σ, 𝐸) consisting of a
signature Σ and equations 𝐸. Σ is a set of generators 𝑜 : 𝑛 → 1 with arity 𝑛 and coarity 1.
The set of equations 𝐸 contains pairs (𝑡, 𝑡 ′ : 𝑛 → 1) of cartesian Σ-terms, namely arrows
of the prop freely generated by the SMT (Σ⊎ Σ𝐶 , 𝐸𝐶 ⊎ 𝐸𝐶𝐻 ) where 𝐸𝐶𝐻 contains equations

o =

o =
o

o

for each generator o : 𝑛 → 1 of the signature Σ.
The Lawvere category freely generated by a cartesian theory T = (Σ, 𝐸), denoted by

LT, is the prop freely generated by the SMT (Σ ⊎ Σ𝐶 , 𝐸 ⊎ 𝐸𝐶 ⊎ 𝐸𝐶𝐻 ). The latter will be
often referred to as the SMT corresponding to the cartesian theory (Σ, 𝐸).

Cartesian terms can be thought as the familiar notion of standard syntactic term:

trees with leaves labeled by variables. The ability to copy and discard variables is given

by and , respectively. Since these structures are implicit in any cartesian

theory, one can therefore think of cartesian terms as resource-insensitive syntax. On

the other hand, the string diagrams of SMTs provide a resource-aware syntax since the

ability to add and copy variables, if available, is made explicit.

Example 2.7.

(a) In Σ-terms of the SMT of commutative monoids CM = (Σ𝑀 , 𝐸𝑀 ) (Example 2.3(a)),

variables cannot be copied or discarded. The cartesian theory of commutative

monoids has the same signature and equations, but terms have the implicit ca-

pability of being copied and discharged. Indeed, the Lawvere category LCM is

isomorphic to the prop PB generated by the SMT of bialgebras (Example 2.3(d)).

(b) By adding to CM the antipode : 1 → 1 and Equation (21), one obtains the

cartesian theory AG of abelian groups. The corresponding SMT is the theory H
of Hopf algebras (Example 2.3(e)): i.e. PH � LAG.

As for SMTs, the assertion that CM is the cartesian theory of commutative monoids
can be made precise using the notion of model of a cartesian theory.

Definition 2.8. Given a cartesian category C, a model of a cartesian theory T in C is a
cartesian functor 𝐹 : LT → C. Then ModCAR (T,C) is the category of models of T in C
and monoidal natural transformations between them.
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For an example take the cartesian category Set. Every model 𝐹 : LT → Set maps 1

to some set 𝑋 and thus every natural number 𝑛 to 𝑋𝑛
. Requiring 𝐹 to be cartesian

forces the counit : 1 → 0 to be mapped into the unique morphism from 𝑋

to the final object 1 = 𝑋 0
and the comultiplication : 1 → 2 to the diagonal

Δ𝑋 = ⟨id𝑋 , id𝑋 ⟩ : 𝑋 → 𝑋 × 𝑋 . So, a model 𝐹 is uniquely determined by the set 𝐹1

and the functions 𝐹𝑜 : (𝐹1)𝑛 → 𝐹1 for each generator 𝑜 : 𝑛 → 1 of the signature. In

a nutshell, the notion of cartesian model for T coincides with the standard notion of

algebra. By spelling out the definition of natural transformation, one can readily check

that morphism of models are homomorphisms.

3 Lax product theories
A first step toward Frobenius theories and their models consists in relaxing products

and considering lax products instead. In this section, we introduce the categorical

machinery to deal with theories of inequations and lax products theories.

Definition 3.1. Suppose that Σ is a set of generators and 𝐼 is a set of inequations: similarly
to an equation, the underlying data of an inequation is simply a pair (𝑡1, 𝑡2) of equal-typed
Σ-terms. Unlike equations, however, we will understand this data as being directed:

𝑡1 ⩽ 𝑡2

We call the pair (Σ, 𝐼 ) a (presentation of a) symmetric monoidal inequation theory (SMIT).

Throughout the paper we use ordered as a synonym for “enriched in Pos” - the

category of posets and monotonic functions. Indeed, just as SMTs lead to props, SMITs

lead to ordered props, as defined below.

Definition 3.2 (Ordered prop). An ordered prop is a prop enriched over the category
of posets: that is, it is a strict symmetric 2-category C with objects the natural numbers,

monoidal product on objects defined as𝑚 ⊕ 𝑛
def
= 𝑚 + 𝑛, where each set of arrows C[𝑚,𝑛]

is a poset, with composition and monoidal product monotonic. Similarly, a pre-ordered

prop is a prop enriched over the category of pre-orders.

We have seen how an SMT (Σ, 𝐸) yields a free prop. Analogously, from a SMIT (Σ, 𝐼 )
one can generate a free ordered prop. First, we construct the free pre-ordered prop whose

arrows are Σ-terms. The hom-set orders are determined by whiskering 𝐼 and closing

it under ⊕, then applying reflexive and transitive closure: this is the smallest preorder

containing 𝐼 that makes C into a pre-ordered prop (i.e. composition is monotonic and ⊕
is a 2-functor). Then, we obtain the free ordered prop by quotienting the free pre-ordered

prop by the equivalence induced by the pre-order; in other words, forcing antisymmetry

by equating terms 𝑠, 𝑡 where 𝑠 ⩽ 𝑡 and 𝑡 ⩽ 𝑠 .

Any SMT (Σ, 𝐸) gives rise to a canonical SMIT (Σ, 𝐼 ) where each equation is replaced

with two inequalities 𝐼 = 𝐸 ⊎ 𝐸𝑜𝑝 , in the obvious way. The free prop for (Σ, 𝐸) can

then be obtained from the free ordered prop for (Σ, 𝐼 ) by forgetting the underlying

2-structure. For this reason, we can safely abuse the notation PT to denote the ordered

prop freely generated by a SMIT T.
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Example 3.3.

(a) The SMT of commutative monoids CM = (Σ𝑀 , 𝐸𝑀 ) (Example 2.3(a)) can be

regarded as the SMIT (Σ𝑀 , 𝐸𝑀 ⊎ 𝐸
𝑜𝑝

𝑀
).

(b) The SMT of cocommutative comonoids CC = (Σ𝐶 , 𝐸𝐶 ) (Example 2.3(b)) can be

regarded as the SMIT (Σ𝐶 , 𝐸𝐶 ⊎ 𝐸
𝑜𝑝

𝐶
).

(c) The SMT of bialgebra B = (Σ𝑀⊎Σ𝐶 , 𝐸𝑀⊎𝐸𝐶⊎𝐵) (Example 2.3(d)) can be regarded

as the SMIT (Σ𝑀 ⊎ Σ𝐶 , 𝐸𝑀 ⊎ 𝐸
𝑜𝑝

𝑀
⊎ 𝐸𝐶 ⊎ 𝐸

𝑜𝑝

𝐶
⊎ 𝐵 ⊎ 𝐵𝑜𝑝 ).

(d) From the SMIT of bialgebra, one can drop the inequations 𝐵𝑜𝑝 and obtain the

SMIT of lax bialgebras LB = (Σ𝑀 ⊎ Σ𝐶 , 𝐸𝑀 ⊎ 𝐸
𝑜𝑝

𝑀
⊎ 𝐸𝐶 ⊎ 𝐸

𝑜𝑝

𝐶
⊎ 𝐵). In this theory,

we have a monoid, a comonoid, and the inequations of 𝐵:

⩽ (22)

⩽ (23)

⩽ (24)

⩽ id0 (25)

These force the monoid to be a lax comonoid homomorphism.

(e) Alternatively, one can drop the inequations in 𝐵 and obtains the SMIT of oplax
bialgebras OLB = (Σ𝑀 ⊎ Σ𝐶 , 𝐸𝑀 ⊎ 𝐸

𝑜𝑝

𝑀
⊎ 𝐸𝐶 ⊎ 𝐸

𝑜𝑝

𝐶
⊎ 𝐵𝑜𝑝 ). The inequations of 𝐵𝑜𝑝

are:

⩾ (26)

⩾ (27)

⩾ (28)

⩾ id0 (29)

Particularly relevant for our exposition is the SMIT of commutative comonoids:

cartesian theories include an implicit comonoid structure and force the generators in the

signature to be comonoid homomorphisms. The theories that we are going to introduce

next — lax product theories — are analogous, but they require the generators to be lax
comonoid homomorphisms.
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Definition 3.4 (Lax product theory, LPT). A (presentation of a) lax product theory is a
pair T = (Σ, 𝐼 ) consisting of a signature Σ and a set of inequations 𝐼 . The signature Σ is a
set of generators 𝑜 : 𝑛 →𝑚 with arity 𝑛 and coarity𝑚. The set of inequations 𝐼 contains
pairs (𝑡, 𝑡 ′ : 𝑛 →𝑚) of L-Σ-terms, namely arrows of the ordered prop freely generated by
the SMIT (Σ ⊎ Σ𝐶 , 𝐸𝐶 ⊎ 𝐸

𝑜𝑝

𝐶
⊎ 𝐼𝐿𝐶𝐻 ) where 𝐼𝐿𝐶𝐻 is the set containing

≤ σ 
m n σ

σ

m
n

n (30)

σ 
m n m≤ (31)

for each generator 𝜎 in Σ.
We refer to (Σ⊎Σ𝐶 , 𝐼⊎𝐸𝐶⊎𝐸𝑜𝑝𝐶 ⊎𝐼𝐿𝐶𝐻 ) as the SMIT corresponding to an LPT T = (Σ, 𝐼 ).

The ordered prop freely generated by the SMIT corresponding to T is called the lax product

prop freely generated by T and denoted by LPT.

The mismatch between and SMITs and LPTs is akin to the one of SMTs and cartesian

theories: the theory of comonoids (Example 3.3(b)) is the SMIT corresponding to the

empty LPT (∅,∅); the theory of lax bialgebra (Example 3.3(d)) is the SMIT corresponding

to the LPT of commutative monoids (Example 3.3(a)).

An important difference between lax product theories and cartesian theories is that

generators in Σ can have arbitrary coarity, not necessarily 1 as is the case in any cartesian

theory. Indeed, the presence of finite products eliminates the need for coarities other

than 1, since to give an arrow 𝑋𝑚 → 𝑋𝑛
in a cartesian category is to give an 𝑛-tuple of

arrows𝑋𝑚 → 𝑋 , obtained by composing with the projections. In a lax product category,

instead, this is not the case. As we shall see below, the category of relations can be

considered as a source of models for a lax product theory and it is clearly not true, in

general, that relations 𝑋𝑚 → 𝑋𝑛
are determined by their projections.

The notion of lax product prop will be formalised in the next subsection. For the

moment, the reader can think of these structures as ordered props where objects are

equipped with a comonoid structure and arrows are lax comonoid homomorphism. This

is the case in LPT as shown below.

Theorem 3.5. Let T = (Σ, 𝐼 ) be an LPT and LPT be the lax product prop freely generated
by it. Then every 𝑡 : 𝑚 → 𝑛 in LPT is a lax comonoid homomorphism.

Proof. By Inequations (30) and (31), every generator in Σ is a lax comonoid homomor-

phism. A simple structural induction extends this property to compound terms:

≤ t1
p r t2

t2

q
r

r
t2

q t1
p

≤ 
t2

t2

q r

r

p t1

t1
q
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u1

u2
≤ 

u2

u1

u1
≤ 

u1

u1

u2

u2

p q

r s

p

q

qr s

p

r

q

q

s

s

□

3.1 Lax product structures and lax products
In Section 2.1 we recalled that the monoidal product is a categorical product precisely

when all arrows are comonoid homomorphisms. Here we show that the property of

arrows being lax-comonoid homomorphisms force the monoidal product to be a lax

product, a bicategorical limit. First, we note that the commutative comonoid structure

in any lax product theory is an instance of something we call a lax product structure.

Definition 3.6 (Lax product structure). Given an ordered monoidal category C, a lax

product structure is a choice, for each object 𝐶 ∈ C, of commutative comonoid (Δ𝐶 ,⊥𝐶 ),
compatible with the monoidal product in the obvious way, i.e.

Δ𝐶⊕𝐷 = (Δ𝐶 ⊕ Δ𝐷 ) ; (𝐶 ⊕ 𝜎𝐶,𝐷 ⊕ 𝐷) ⊥𝐶⊕𝐷 = ⊥𝐶 ⊕ ⊥𝐷 ,

such that, for every arrow 𝛼 : 𝐵 → 𝐶 , we have

𝛼 ; Δ𝐶 ⩽ Δ𝐵 ; (𝛼 ⊕ 𝛼) and 𝛼 ; ⊥𝐶 ⩽ ⊥𝐶 .

Lemma 3.7. In an ordered monoidal category C, a lax product structure, if it exists, is
unique.

Proof. Consider lax product structures {(Δ𝐶 ,⊥𝐶 ) : 𝐶 ∈ C} and {(Δ′
𝐶
,⊥′

𝐶
) : 𝐶 ∈ C}

which we shall draw ( , ) and

(
,

)
, respectively. It follows that, for

all 𝐶 , we have ⊥𝐶 = ⊥′
𝐶

since ⊥′
𝐶
⩽ ⊥𝐶 ; indeed

= ≤ = .

The first equality uses unitality, the second is interchange in a monoidal category, and

the third is (31). Using a symmetric argument, we deduce ⊥𝐶 ⩽ ⊥′
𝐶

. Since the lax

product structure is, by definition, assumed to be compatible with monoidal product

and since ⊥𝐶 = ⊥′
𝐶

we have Δ′
𝐶
⩽ Δ𝐶 by

= ≤ = = 

and, again by a symmetric argument, we conclude Δ𝐶 ⩽ Δ′
𝐶

. □
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We will now show that, if an ordered monoidal category has a lax product structure,

then the monoidal product is a lax product, by which we mean the following bicategorical

limit. Given objects 𝑚 and 𝑛, a lax product is an object 𝑚 × 𝑛 with projections, that is

arrows 𝜋1 : 𝑚 × 𝑛 →𝑚, 𝜋2 : 𝑚 × 𝑛 → 𝑛 such that, for any 𝑓 : 𝑘 →𝑚, 𝑔 : 𝑘 → 𝑛, there

exists ℎ : 𝑘 →𝑚 × 𝑛 and 2-cells 𝜌1, 𝜌2 satisfying

𝑚 𝑚 × 𝑛
𝜌1

z�
𝜌2

�"

𝜋1oo 𝜋2 // 𝑛

𝑘𝑓

TT

𝑔

KK

ℎ

OO (32)

such that, given any other ℎ′, 𝜎1, and 𝜎2 which verify

𝑚 𝑚 × 𝑛

𝜎1

z�
𝜎2

�"

𝜋1oo 𝜋2 // 𝑛

𝑘𝑓

TT

𝑔

KK

ℎ′

OO

there exists a unique 𝜉 : ℎ′ ⇒ ℎ such that

𝑚 𝑚 × 𝑛
𝜋1oo

𝜌1

��
𝜉ks

𝑘

ℎ′

^^

ℎ

@@

𝑓

TT

=

𝑚 𝑚 × 𝑛
𝜋1oo

𝜎1

v~

𝑘

ℎ′

OO

𝑓

TT

and

𝜉 +3

𝑚 × 𝑛
𝜋2 //

𝜌2

��

𝑛

𝑘

ℎ

^^

ℎ′

@@

𝑔

KK

=

𝑚 × 𝑛
𝜋2 //

𝜎2

�'

𝑛

𝑘

ℎ′

OO

𝑔

KK

.

Theorem 3.8 (Carboni and Walters). Suppose that C has a lax product structure. Then
the monoidal product of C is a lax product.

Proof. The projections are:

𝜋1

def

= n

m

𝜋2

def

=
n

m

It is easy to show that the universal property holds. Indeed, given 𝑓 : 𝑘 → 𝑚 and

𝑔 : 𝑘 → 𝑛, we see that

ℎ =
k f

g

m

n
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gives us 𝜌1 and 𝜌2 (32) since

k f

g

m

n ≤  k f m

fk
k

m=  

and, similarly,

k f

g

m

n
gk n≤  .

Given any ℎ′ : 𝑘 →𝑚 ⊕ 𝑛 with

h'k
m
n fk m≤  and h'k

m

n gk n≤  

we have

h'k
m

n = h'k
m

n m

n
k

h'

h'

n
m

m

n

k f

g

m

n
≤  ≤  .

□

Corollary 3.9. Let T be a SMIT. Then in LPT, the monoidal product is a lax product.

Proof. By Theorem 3.5 we know that every arrow LPT is a lax comonoid homomor-

phism, thus the monoidal product is a lax product by Theorem 3.8. □

Corollary 3.10. In Rel, considered as a 2-category (the 2-cells are set inclusions), the
cartesian product is a lax product.

Proof. It suffices to show that every relation is a lax comonoid homomorphism. The lax

product structure is then obtained as in the proof of Theorem 3.8. □

The appropriate notion of model for a lax product theory is a poset-enriched

monoidal functor that preserves lax product structure, in the sense of Definition 3.6.

The notion of homomorphism of models is then a lax monoidal natural transformation

between such functors.

More concretely, we define a lax product category to be a symmetric monoidal

category, enriched over the category of posets, that contains a lax product structure in

the sense of Definition 3.6. A lax product prop is both an ordered prop and lax product

category. A lax product functor is a poset-enriched functor that preserves the lax product

structure. Fixing a lax product category C, models for an LPT T are lax product functors

𝐹 : LPT → C, and homomorphisms are lax monoidal natural transformations.

In order to avoid duplication, we postpone a more comprehensive discussion to

Section 4, and first introduce Frobenius theories, which are a particularly interesting and

expressive variant of lax product theories.
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4 Frobenius theories and their models
In this section we introduce the main contribution of this work: Frobenius theories

and their models. To this aim we recall the concept of cartesian bicategories of relations
from [18] and flesh out some of their properties.

Recall that an arrow 𝑓 : 𝐵 → 𝐶 in a 2-category has a right adjoint 𝑔 : 𝐶 → 𝐵 when

there exist 2-cells 𝜂 : id𝐵 → 𝑓 ; 𝑔 and 𝜀 : 𝑔 ; 𝑓 → id𝐶 satisfying the well-known triangle

equations. In the poset-enriched case, this simplifies to requiring merely

id𝐵 ⩽ 𝑓 ; 𝑔 𝑔 ; 𝑓 ⩽ id𝐶 . (33)

In Section 3 we saw a particular emphasis on the SMT of commutative comonoids

(Example 2.3(b)). According to (33), to define adjoints to the generators { , }, in

a lax product theory, it suffices to add generators { , } and inequations of (4).

Next, recall from Example 2.3(c) that the SMT F of special Frobenius monoids has,

as set of generators, { , , , } and, as equations, those that guarantee

that the generators above form, respectively, a commutative monoid and commutative

comonoid, together with the Frobenius equation and the special equation:

= =

Succinctly, cartesian bicategories of relations are lax product categories where the lax

product structure has right adjoints (a commutative monoid), satisfying the equations

of special Frobenius monoids. We spell out the details below.

Definition 4.1. A cartesian bicategory of relations is a poset enriched category that is
symmetric, monoidal, and satisfies the following conditions.

1. For every object 𝑛, there are arrows Δ𝑛 : 𝑛 → 𝑛 ⊕ 𝑛 and !𝑛 : 𝑛 → 𝐼 , graphically
denoted by

n
and

n
forming a cocommutative comonoid.

2. For every object 𝑛, there are arrows ∇𝑛 : 𝑛 ⊕ 𝑛 → 𝑛 and ?𝑛 : 𝐼 → 𝑛, graphically
denoted by

n
and

n
, forming a commutative monoid.

3. The monoids and the comonoids satisfy the five inequations:

nn
⩽

n
n (34)

n ⩽
n n

(35)

n n
⩽ id0 (36)
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n ⩽
n n

(37)

n
n =

nn
=

n
n (38)

4. Every arrow 𝑅 : 𝑚 → 𝑛 is a lax comonoid homomorphism:

R
m n

⩽
R

R

m
n

n
(39)

Rm n
⩽

m
(40)

Inequations (34) and (35) state that

n
is the left adjoint of

n
, while Inequa-

tions (36) and (37) state that

n
is the left adjoint of

n
. Note that Equation (38) is

Equation (13) of Example 2.3(c) describing the SMT of special Frobenius algebras; its

other Equation (14) holds in any cartesian bicategory of relations: one direction is given

by (35) and the other is proved as follows.

n n ⩽ n
n n

n
=

n

Therefore, we will often refer to the monoid and the comonoid of a cartesian bicategory

of relations C as the (special) Frobenius structure of C.

Since Condition 4 requires every arrow to be a lax comonoid homomorphism, we

know by Theorem 3.8, that the monoidal product ⊕ is a lax-product. This helps us in

showing that Rel is a cartesian bicategory of relations: indeed, from Corollary 3.10

we know that the lax product in Rel is simply the cartesian one. Now for every set 𝑋 ,

Δ𝑋 : 𝑋 → 𝑋 × 𝑋 is the diagonal relation {(𝑥, (𝑥, 𝑥)) : 𝑥 ∈ 𝑋 }, !𝑋 : 𝑋 → 1 = {•} is

the relation {(𝑥, •) : 𝑥 ∈ 𝑋 }, ∇𝑋 : 𝑋 × 𝑋 → 𝑋 and !𝑋 : 1 → 𝑋 are, respectively, their

opposite relations. One can easily check that the inequations in Condition 3 hold.

A cartesian bifunctor is the notion of structure-preserving homomorphism between

cartesian bicategories of relations. In fact, it suffices to require that the lax product

structure, in the sense of Definition 3.6, is preserved, that is, the notion of cartesian

bifunctor is the same as lax product functor. Indeed, the fact that adjoints are preserved

follows from (2-)functoriality, since adjoints are uniquely defined in ordered categories.

Compact closed structure. In any cartesian bicategory of relations we have a self-

dual compact closed structure. To describe it, we adopt the graphical notation:

R†
def

= Я
def

= R
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For an intuition consider Rel: it is easy to check that 𝑅†
is just the opposite relation of 𝑅.

Lemma 4.2. If C is a cartesian bicategory of relations, then † : C𝑜𝑝 → C is a 2-functor:

(i) id
† = id

(ii) (𝑅 ; 𝑆)† = 𝑆† ; 𝑅†

(iii) (𝑅 ⊕ 𝑆)† = 𝑅† ⊕ 𝑆†

(iv) If we have

SR ⊆ ,

then
ƧЯ ⊆ .

Proof. (i) is easy to check; it is the so-called snake lemma. For (ii):

R S =
R

S

= Ƨ Я

For (iii):

R

S
=

R

S

=R

S

For (iv):

R R= ⊆ S = Ƨ

□

Maps and comaps. By applying Lemma 4.2(ii) and (iv) to Inequations (39) and (40),

one obtains the following two inequations for any arrow 𝑅 : 𝑚 → 𝑛 of a cartesian
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bicategory of relations:

R ⩽ (41)

R ⩽
R

R

(42)

The inequations below do not in general hold:

R

R
⩽ R

(SV)

⩽ R (TOT)

R

R

⩽ R (INJ)

⩽ R (SUR)

An arrow 𝑅 : 𝑚 → 𝑛 in a cartesian bicategory is said to be single valued, total, injective,

or surjective if it satisfies (SV), (TOT), (INJ), or (SUR), respectively. A map is an arrow

that is both single valued and total, namely a comonoid homomorphism. A comap is an

arrow that is both injective and surjective, namely a monoid homomorphism. It is easy

to see that in Rel, these coincide with the familiar notions.

The simple lemma below will be useful in subsequent proofs.

Lemma 4.3 (Wrong way). We have:

R
≤ R

Я

Proof.

□
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Lemma 4.4. Consider the four inequalities:

RЯ ≤ (43)

R≤ Я (44)

ЯR ≤ (45)

Я≤ R (46)

An arrow 𝑅 : 𝑚 → 𝑛 is single valued iff (43) holds, total iff (44) holds, injective iff (45)

holds and surjective iff (46) holds.

Proof. (SV) ⇒ (43):

(43) ⇒ (SV):

R

R
≤

R
R

R

≤ R

(TOT) ⇒ (44):

(44) ⇒ (TOT):

≤ R Я ≤ R

(INJ) ⇔ (45) follows as a corollary of (SV) ⇔ (43).

(SUR) ⇔ (46) follows as a corollary of (TOT) ⇔ (44). □
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Corollary 4.5. Let 𝑅, 𝑆 : 𝑚 → 𝑛 be two maps. If 𝑅 ⩽ 𝑆 then 𝑅 = 𝑆 .

Corollary 4.6 (Span cancellation). An arrow 𝑅 is single valued and surjective if and only
if it satisfies:

RЯ =

Corollary 4.7 (Cospan cancellation). An arrow 𝑅 is injective and total if and only if it
satisfies:

ЯR =

Lemma 4.8. 𝑅 is a map if and only if it has a right adjoint. Its right adjoint is then 𝑅†.

Proof. If 𝑅 is a map, then it is total and single valued. The fact that it is total gives the

unit (44) of the adjunction and the fact that it is single valued gives the counit (43).

Suppose that 𝑅 has right adjoint 𝑆 :

R≤ S R ≤S

Then:

Thus, 𝑅 is single valued, and

≤ R S ≤ R

so 𝑅 is total. By Lemma 4.4, 𝑅†
is also right adjoint to 𝑅. Thus, by the standard argument,

we have

S = Я .

□

Corollary 4.9. An arrow 𝑅 is a comap if and only if it has a left adjoint 𝑆 ; in that case,
we have 𝑆 = 𝑅†.

Corollary 4.10. An arrow 𝑅 is an isomorphism if and only if 𝑅−1 = 𝑅†.
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Convolution. We now show that in a cartesian bicategory of relations every hom-set

is a meet-semilattice. Given arrows 𝐴 : 𝑚 → 𝑛 and 𝐵 : 𝑚 → 𝑛 we define the convolution
of 𝐴 and 𝐵, written 𝐴 ? 𝐵, by:

? def

= Δ𝑚 ; 𝐴 ⊕ 𝐵 ; ∇𝑛 =

A

B

m n

Lemma 4.11. Convolution is associative, commutative, idempotent and unital, with unit:

⊤𝑚,𝑛

def
= !𝑚 ;?𝑛 =

m n

Proof. The proof for associativity, commutativity and unitality is trivial using the fact

that (Δ, !) is a commutative comonoid and (∇, ?) is a commutative monoid. For idempo-

tency, observe the inequalities:

R = R ⩽
R

R

⩽
R

R

⩽
R

= R

□

Since ? is associative, commutative and idempotent, it induces an ordering. In the

following we show that this ordering is exactly ⩽.

Lemma 4.12. For all arrows 𝑅 : 𝑛 →𝑚, we have 𝑅 ⩽ ⊤𝑚,𝑛 .

Proof. Consider:

R ⩽ R ⩽

□

Lemma 4.13. 𝑅 ? 𝑆 = 𝑆 if and only if 𝑆 ⩽ 𝑅.

Proof. Assume 𝑅 ? 𝑆 = 𝑆 . Then 𝑅 = 𝑅 ? ⊤ ⩾ 𝑅 > 𝑆 = 𝑆 . Assume 𝑆 ⩽ 𝑅. Then

𝑅 ? 𝑆 ⩾ 𝑆 ? 𝑆 = 𝑆 . Moreover 𝑆 = 𝑆 ? ⊤ ⩾ 𝑆 ? 𝑅. □

Corollary 4.14. The partial order ⩽ is a meet-semilattice with top.



Poly. J. Math. 2 (6) 26

4.1 Carboni–Walters categories and Frobenius theories
In ordinary functorial semantics, any finite product category can serve as a semantic

domain, with the category of sets and functions the default choice. Cartesian bicategories

of relations will serve as the domain for our notion of functorial semantics, with the

category of sets and relations as a particularly useful universe.

We call an ordered prop that is, additionally, a cartesian bicategory of relations a

frop (Frobenius prop) or a Carboni–Walters category. Similarly to how a cartesian theory

results in a Lawvere category, a Frobenius theory results in a Carboni–Walters category.

To formally introduce this fact is convenient to consider the SMIT CW: the signature

Σ𝐶𝑊 consists of : 1 → 2, : 1 → 0, : 2 → 1 and : 0 → 1. The

set 𝐼𝐶𝑊 contains the inequations for comonoids, monoids and (34)–(38) for 𝑛 = 1. The

ordered PROP freely generated by CW is a cartesian bicategory of relations: for every

natural number 𝑛, the comonoids and monoid are defined analogously to Example 2.5(a).

It is then easy to check that the Inequations (34)–(40) hold.

Similarly to how cartesian theories implicitly contain the SMT of comonoids when

generating props, Frobenius theories implicitly contain the SMIT CW.

Definition 4.15. A (presentation of a) Frobenius theory (FT) is a pair T = (Σ, 𝐼 ) consisting
of a signature Σ and a set of inequations 𝐼 . The signature Σ is a set of generators 𝑜 : 𝑛 →𝑚

with arity 𝑛 and coarity 𝑚. The set of inequations 𝐼 contains pairs (𝑡, 𝑡 ′ : 𝑛 → 𝑚) of
Frobenius Σ-terms, namely arrows of the ordered PROP freely generated by the SMIT
(Σ ⊎ Σ𝐶𝑊 , 𝐼𝐶𝑊 ⊎ 𝐼𝐿𝐶𝐻 ) where 𝐼𝐿𝐶𝐻 is the set containing the Inequations (30) and (31) for
each generator 𝜎 : 𝑚 → 𝑛 in Σ.

The Carboni–Walters category freely generated by a Frobenius theory T = (Σ, 𝐼 ),
denoted by FT, is the ordered PROP freely generated by the SMIT (Σ⊎Σ𝐶𝑊 , 𝐼 ⊎ 𝐼𝐶𝑊 ⊎ 𝐼𝐿𝐶𝐻 ).
The latter will be often referred to as the SMIT corresponding to the Frobenius theory (Σ, 𝐼 ).

Example 4.16.

(a) The SMIT of commutative monoids CM = (Σ𝑀 , 𝐸𝑀 ⊎ 𝐸
𝑜𝑝

𝑀
) from Example 3.3(a)

can be regarded also as a Frobenius theory. In the corresponding SMIT, (Σ𝑀 ⊎
Σ𝐶𝑊 , 𝐸𝑀 ⊎ 𝐸

𝑜𝑝

𝑀
⊎ 𝐼𝐶𝑊 ⊎ 𝐼𝐿𝐶𝐻 ) one has two monoidal structures which we re-

fer as the white monoid (coming from Σ𝑀 ) and the black monoid (coming from

Σ𝐶𝑊 ). Moreover, since FCM is an CW-category, we have also ::= ( )†
and ::= ( )†. Graphically:

::=

::=

It is easy to prove that

(
,

)
forms a cocommutative comonoid. Observe

that the set 𝐼𝐿𝐶𝐻 consists of Inequations (22)–(25) from the theory of lax bialgebras

(Example 3.3(d)).
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(b) To the previous theory we can add Inequalities (26)–(29) from the theory of

oplax bialgebra (Example 3.3(e)). Since in all these equations, the left- and right-

hand side are Frobenius terms, the result is a Frobenius theory: we denote it by

CM+ = (Σ𝑀 , 𝐸𝑀 ⊎ 𝐸
𝑜𝑝

𝑀
⊎ 𝐵𝑜𝑝 ). Since both inequalities hold, the black and white

structures form a bialgebra. The corresponding SMIT is illustrated in Figure 2.

In Section 6, we will see that this theory can be understood as the result of a more

general construction and that, in a precise sense, it is equivalent to the cartesian

theory of monoids (Example 2.7(a)). For this reason, we will refer to this theory

as the Frobenius theory of monoids. In Section 7, we will show that it provides a

rich algebraic playground.

We can define an appropriate category of models for Frobenius theories in a similar

way to how it is defined for symmetric monoidal and cartesian theories,

Definition 4.17. Given a cartesian bicategory of relations C, a model of a Frobenius
theory T in C is a cartesian bifunctor 𝐹 : FT → C. A morphism of models 𝐹 → 𝐺 is
a lax-natural monoidal transformation 𝛼 : 𝐹 ⇒ 𝐺 . This means that 𝛼 is a family of
C-morphisms {𝛼𝑛 : 𝐹𝑛 → 𝐺𝑛}𝑛∈N such that, for all 𝑓 : 𝑛 →𝑚 in FΣ,𝐸 , we have

𝐹𝑛

𝐹 𝑓

��

𝛼𝑛 // 𝐺𝑛

𝐺𝑓

��
𝐹𝑚

𝛼𝑚
//

⩽

𝐺𝑚

and 𝛼𝑛+𝑚 = 𝛼𝑛 ⊕ 𝛼𝑚 with 𝛼0 = id0.
The category of models of T in C and their morphisms is denoted by ModFROB (T,C).

Since a cartesian bifunctor is obliged to preserve lax products, it is forced to map the

Frobenius structure of FT into the unique Frobenius structure of C that determines the

lax product. When C = Rel, this means that any cartesian bifunctor 𝐹 : FT → Rel maps

↦→ {(𝑥, (𝑥, 𝑥)) : 𝑥 ∈ 𝐹1} ↦→ {(𝑥, •) : 𝑥 ∈ 𝐹1}

↦→ {((𝑥, 𝑥), 𝑥) : 𝑥 ∈ 𝐹1} ↦→ {(•, 𝑥) : 𝑥 ∈ 𝐹1}

where • is the unique element of the singleton set {•} = 1 = (𝐹1)0
. Therefore, a model 𝐹

is determined by the object 𝐹1 and the arrows 𝐹𝑜 for all 𝑜 ∈ Σ. The implications of using

lax natural transformations as model homomorphisms are explained in the next section.

5 Examples of Frobenius theories
In this section, we consider some examples of simple Frobenius theories and their

models. We usually interpret the theory in the cartesian bicategory of relations Rel.
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The theory of sets. We first answer the obvious question: what is the category of

models for the empty Frobenius theory (∅,∅)? The answer is at first sight surprising:

this is just Set the category of sets and functions. Indeed, a cartesian bifunctor 𝐹 :

F∅,∅ → Rel is uniquely determined by the object 𝐹1, which is just a set.

A morphism of models 𝛼 : 𝐹 ⇒ 𝐺 is determined by 𝛼1 : 𝐹1 → 𝐺1 which is a relation

satisfying the requirement that the following four squares laxly-commute.

𝐹1

Δ

��

𝛼1 // 𝐺1

Δ

��
𝐹2

𝛼1⊕𝛼1

//

⩽

𝐺2

𝐹1

!

��

𝛼1 // 𝐺1

!

��
𝐹0

id0

//

⩽

𝐺0

𝐹2

∇

��

𝛼1⊕𝛼1 // 𝐺1

∇

��
𝐹1

𝛼1

//

⩽

𝐺1

𝐹0

?

��

id0 // 𝐺0

?

��
𝐹1

𝛼1

//

⩽

𝐺1

The inequalities in the two rightmost squares hold for any relations. Instead the inclusion

in the two leftmost squares holds if and only if the relation is a map, and maps in Rel
coincide with functions.

Remark 5.1. Requiring morphisms of models to be strict natural transformations rather

than just lax (as in Definition 4.17) would mean to force the four above inequalities to be

equalities. In this case, a morphism of model would be both a map and a comap, namely

an isomorphism.

The theory of non-empty sets. Let us now consider the Frobenius theory having

empty signature and the inequation:

id0 ⩽ (47)

Observe that the reverse of (47) is (36). Here, therefore, the so-called bone equation

holds:

= id0

The corresponding SMIT has been studied in [15, 24, 27, 54]. In these works it is proven

that the resulting prop is isomorphic — forgetting the posetal structure — to the prop of

equivalence relations (where a morphism 𝑛 →𝑚 is an equivalence relation on 𝑛 +𝑚

regarded as a set).

From our perspective, this theory has quite a different meaning. Its models are sets

that contain at least one element: indeed any cartesian bifunctor 𝐹 to Rel maps 0 to

(𝐹1)0
, i.e., the singleton set {•}, the left-hand side of (47) to id{•} = {(•, •)} and the

right-hand side to the relational composition of {(•, 𝑥) : 𝑥 ∈ 𝐹1} and {(𝑥, •) : 𝑥 ∈ 𝐹1}.
It follows that (47) holds if and only if 𝐹1 is not empty.

Morphisms are functions, for the same reasons as in the previous example.

The theory of predicates. We start adding symbols to the signature: consider the

theory containing an operation : 0 → 1 and no equations. A model for this theory
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consists of a set 𝐹1 and a predicate 𝐹 ( ) ⊆ 𝐹1. A morphism of models 𝛼 : 𝐹 ⇒ 𝐺

is uniquely determined by 𝛼1 : 𝐹1 → 𝐺1 which is a function (for the same reason

discussed above) which additionally satisfies the inequality:

𝐹0

𝐹 (𝐸𝑅𝑅𝑂𝑅)

��

id0 // 𝐺0

𝐺 (𝐸𝑅𝑅𝑂𝑅)

��
𝐹1

𝛼1

//

⊆

𝐺1

To make it more explicit the category of models for this theory is the category of

predicates and predicate-preserving functions.

The theory of pointed sets. We can extend the theory of predicates by requiring

to be total and single valued. That is, we impose Inequations (27) and (29). A model for

this theory is a set 𝐹1 with a function 𝐹 ( ) : 𝐹0 → 𝐹1. Since 𝐹0 is the singleton set

{•}, this is a pointed set. A morphism of models is a function preserving the point. In

the diagram

𝐹0

𝐹 (𝐸𝑅𝑅𝑂𝑅)

��

id0 // 𝐺0

𝐺 (𝐸𝑅𝑅𝑂𝑅)

��
𝐹1

𝛼1

//

⩽

𝐺1

all arrows are maps and therefore, by Corollary 4.5, they commute strictly not just

laxly. Observe that the reverse of Inequations (27) and (29) are equations in the SMIT

corresponding to this theory. Therefore we have:

= id0

=

With these equations, we can prove that every pointed set is non-empty, namely that

Inequation (47) holds; indeed:

id0 =
(31)

⩽

Another simple graphical derivation proves that is injective:

=
(34)

⩽ =

Thus, by Corollary 4.7, we have the (white) bone law

= id0 (48)
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where, as in Example 4.16(a), : 1 → 0 is the notation for
†
.

The last property that we are going to show is:

=
(38)

=

= =

The above equation proves that the Carboni–Walters category generated by the Frobe-

nius theory of pointed sets is isomorphic (disregarding the posetal structure) to the prop

of partial equivalence relations studied in [54].

The theory of binary relations. We now consider the theory containing an operation

𝑅 : 1 → 1 and no equations. A model for this theory consists of a set 𝐹1 and a relation

𝐹𝑅 ⊆ 𝐹1 × 𝐹1. A morphism of models 𝛼 : 𝐹 ⇒ 𝐺 is determined by 𝛼1 : 𝐹1 → 𝐺1 which

is a function that satisfies the inequality:

𝐹0

𝐹𝑅

��

𝛼1 // 𝐺0

𝐺𝑅

��
𝐹1

𝛼1

//

⩽

𝐺1

This simply means that the function 𝛼1 preserves the relation 𝑅: if (𝑥,𝑦) ∈ 𝐹𝑅, then

(𝛼1 (𝑥), 𝛼1 (𝑦)) ∈ 𝐺𝑅. The category of models is, therefore, the category of binary

relations.

The theory of partial orders. The category of partial orders and monotone maps

can be obtained as the category of models of a Frobenius theory : the signature consists

of a single symbol ⊑ : 1 → 1 representing a relation and the three inequations

below impose reflexivity, transitivity and antisymmetry:

⩽ ⊑ (49)

⊑ ⊑ ⩽ ⊑ (50)

⊑

⊒
⩽ (51)
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In Inequation (51), ⊒ : 1 → 1 is the inverse relation of ⊑ formally defined

as ⊑ †
. Graphically:

⊒ = v

It is easy to see that a model for this theory is exactly a set equipped with a relation

that is a partial order. By spelling out the definitions of morphism of model, the same

arguments of the previous example applies: a morphism is just a function that preserves

the relation, namely a monotone function. The category of models is thus the usual

category of posets and monotone functions.

Remark 5.2. Modifying the above, one obtains many familiar theories. For instance, by

replacing antisymmetry (Inequation (51)) by symmetry ( ⊑ ⩽ ⊒ ) one obtains

equivalence relations. By dropping it, one gets pre-orders.

The theory of deterministic automata. A deterministic automaton (DA) on a finite

alphabet 𝐴 consists of a triple (𝑋, 𝑡, 𝑓 ), where 𝑋 is a set of states, 𝑡 : 𝑋 → 𝑋𝐴
is

the transition function and 𝑓 ⊆ 𝑋 is its set of final states. Given DAs (𝑋1, 𝑡1, 𝑓1) and

(𝑋2, 𝑡2, 𝑓2), a function ℎ : 𝑋1 → 𝑋2 is a simulation if (1) ℎ(𝑓1) ⊆ 𝑓2 and (2), for all 𝑥 ∈ 𝑋 ,

and 𝑎 ∈ 𝐴, ℎ(𝑡1 (𝑥) (𝑎)) = 𝑡2 (ℎ(𝑥) (𝑎)).
We now introduce a Frobenius theory DA for deterministic automata and simula-

tions. The signature consists of two symbols 𝑓 : 1 → 0 and 𝑡 : 1 → |𝐴|. The set of

inequations only requires that 𝑡 is a map: Δ ; (𝑡 ⊕ 𝑡) ⩽ 𝑡 ; Δ |𝐴 | and ! ⩽ 𝑡 ;! |𝐴 | .
Then models are exactly deterministic automata. Indeed a model 𝐹 : FDA → Rel

consists of a set 𝐹1 (representing the states) a function 𝐹𝑡 : 𝐹1 → (𝐹1) |𝐴 |
(the transition)

and a relation 𝐹 𝑓 : 𝐹1 → 1 = (𝐹1)0
, namely a predicate (the final states).

Morphisms are exactly simulations. They are functions for the usual reason and the

lax naturality squares

𝐹1

𝐹 𝑓

��

𝛼1 // 𝐺1

𝐺𝑓

��
𝐹0

id0

//

⩽

𝐺0

𝐹1

𝐹𝑡

��

𝛼1 // 𝐺1

𝐺𝑡

��
𝐹 |𝐴|

𝛼 |𝐴|
//

⩽

𝐺 |𝐴|

impose, respectively, Conditions (1) and (2) of the definition of simulation.

Remark 5.3. This example suggests that one may use Frobenius theories to express

coalgebraic structures. Indeed, one can encode a function 𝑓 : 𝑋 → 𝑋𝑛
either by having

in the signature a symbol 𝑓 : 1 → 𝑛 and imposing the axioms for functions or as

a symbol 𝑓 : 𝑛 → 1 and impose the axioms of cofunctions. Then the lax-naturality

conditions make the morphism the expected coalgebra homomorphisms.

Unfortunately, one can express only coalgebras for functors of the shapes 𝐹 (𝑋 ) = 𝑋𝑛
,

which are usually not particularly interesting: the final coalgebras is always the one
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element set 1. More interesting functors, such as 𝐹 (𝑋 ) = 𝑋 × 𝑋 + 1 (finite and infinite

trees), cannot be expressed in our framework: intuitively we are missing the coproduct +.

The theory of non-negative monoids. Recall the Frobenius theory of monoids CM+

from Example 4.16(b). It is now easy to see that its models in Rel are simply ordinary

monoids in Set, and morphisms of models are just monoid homomorphisms.

By adding to CM+
the inequation

⩽ (52)

we obtain the theory of non-negative monoids. These are monoids (𝑋,+, 0) with the

additional property that, for all 𝑥,𝑦 ∈ 𝑋 , if 𝑥 +𝑦 = 0, then 𝑥 = 0 and 𝑦 = 0. Note that the

string diagrams on both sides of (52) are Frobenius terms: the definition of the white

counit requires the Frobenius structure.

6 From cartesian theories to Frobenius theories
In Example 2.7(a) we introduced the cartesian theory of commutative monoids

CM. In Example 4.16(b) we showed that the Frobenius theory of commutative monoid

CM+
is obtained from CM by adding inequality of oplax bialgebras, that forces the

(white) monoid structure to be an oplax (black) comonoid homomorphism. Since in any

Frobenius theory, the generators are implicitly forced to be lax comonoid homomorphism

(inequations (30) and (31)), one has that in the SMIT corresponding to CM+
, as in the

SMT corresponding to CM, the white monoid is a strict black comonoid homomorphism.

This construction can be generalised as follows: given any cartesian theory T =

(Σ, 𝐸) one builds the Frobenius theory T+ = (Σ, 𝐸 ⊎ 𝐸𝑜𝑝 ⊎ 𝐼𝑂𝐿𝐶𝐻 ) where 𝐼𝑂𝐿𝐶𝐻 consists

of the two inequalities

⩽ o (53)

o

o
⩽ o (54)

for each generator o : 𝑛 → 1 in the signature Σ. The two theories are closely

related: indeed, the category of cartesian models for T in Set is isomorphic to the

category of Frobenius models for T+
in Rel.

One can further generalize by replacing Rel with an arbitrary cartesian bicategory

of relations C and Set by its category of maps Map(C), which is defined to be the sub-

bicategory of C having as arrows the maps of C. Indeed, Map(C) has finite products.

Proposition 6.1 ([18, Theorem 6.1(i)]). Let C be a cartesian bicategory of relations. Then
Map(C) is a cartesian category.
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We can now state the main result of this section.

Theorem 6.2. Let T = (Σ, 𝐸) be a cartesian theory and T+ = (Σ, 𝐸 ⊎ 𝐸𝑜𝑝 ⊎ 𝐼𝑂𝐿𝐶𝐻 ). Then
ModFROB (T+,C) � ModCAR (T,Map(C)).
Proof. This theorem can be proved in several ways. We give a concrete proof that uses

the intuitions developed so far for models and their morphisms.

A cartesian bifunctor 𝐹 : FT+ → C is uniquely determined by: (a) the object 𝐹1 in C
and (b) arrows 𝐹𝑜 in C for any generator 𝑜 ∈ Σ. Inequations (53) and (54) force each of

the 𝐹𝑜 to be a map, namely an arrow in Map(C). The same data uniquely determine a

cartesian functor 𝐹 : LT → Map(C).
For morphisms, observe that 𝛼 : 𝐹 → 𝐺 of Frobenius models is uniquely determined

by an arrow of C 𝛼1 : 𝐹1 → 𝐺1 that is a map (recall from Section 5 the example

of the theory of sets). The morphism 𝛼 is additionally required to be a lax natural

transformation, but since all the 𝐹𝑜 are maps then, by Corollary 4.5, this just means

that 𝛼 is a (strict) natural transformation. This data uniquely induces a morphism of

cartesian models. □

Thus Frobenius theories are at least as expressive as cartesian theories. The examples

of non-empty sets, predicates, binary relations, partial orders, DAs and non-negative

monoids in Section 5 show that Frobenius theories are strictly more expressive than

classical (cartesian) algebraic theories. In the remainder of this paper, we explore several

Frobenius theories arising from well-known cartesian theories.

7 The theory of commutative monoids
In this section we explore the algebraic properties of the Frobenius theory of commu-

tative monoids CM+
introduced in Example 4.16(b). Its SMIT is illustrated in Figure 2.

Observe that the white monoid and the black comonoid form a bialgebra structure

(Example 2.3(d)). This has two interesting consequences. First, by Lemma 4.2(iv), we

have that also the black monoid and the white comonoid give rise to a bialgebra. Second,

we have that both and are total and single valued. By Lemma 4.4, we have

the inequalities:

⩽ (55)

⩽ (56)

id0 ⩽ (57)

⩽ (58)

By using Lemma 4.12, it is easy to see that is surjective:

(31)

⩾ = (59)
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Figure 2: The SMIT corresponding to the Frobenius theory of commutative monoids.
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Thus, by Corollary 4.6, we deduce the white special law:

= (60)

As in the theory of pointed sets, is injective; indeed:

=
(34)

⩽ = (61)

Thus, by Corollary 4.7, we deduce the so-called white bone law:

= id0

Observe that the inverse inclusions for (59) and (61) hold by (41) and (42). Therefore:

=

=

These two equations can be weakened to some extent. For the latter, we have:

= =

= = (62)

The “colour-swapped” version below holds only laxly by Lemma 4.12:

⩽

In any model with carrier 𝑋 , the other inclusion would mean that for all 𝑥, 𝑧 ∈ 𝑋 , there

exists 𝑦 such that 𝑥 + 𝑦 = 𝑧. Later we will show that this holds for abelian groups.

Another interesting law which can be derived in the theory of commutative monoids

is the black bone:

= id0 (63)

Indeed, the left-to-right inequation is just (36). For the right-to-left, observe that:

id0 =
(31)

⩽
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Recall that (63) does not hold in the theory of sets: the empty set does not satisfy it.

Intuitively, (63) states that every commutative monoid has a non-empty carrier set;

indeed, it must contain at least the unit element.

The pair of white-monoid white-comonoid forms a lax Frobenius structure. This is

proved as follows:

(55)

⩽
(7)

=
(60)

= (64)

Lemma 4.2(iv) then implies:

⩽ (65)

The pair of white monoid-comonoid forms a lax bialgebra. We have seen that (48)

holds. The other laws only hold laxly:

(55)

⩽
(9)

=

Note that the other direction does not hold in general for monoid: it would mean that

every monoid is non-negative (see Section 5). The remaining rule can be proved by

using the lax Frobenius equations thus:

(8)

=
naturality

=

(65)

⩽
(64)

⩽

(7)

=
(8)

=

(64)

⩽
(60)

=

Again, the inverse inequation does not hold in general for monoids. We will see in

Section 8 that it holds for abelian groups.
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The two laws below state that the black multiplication laxly distributes over the

white multiplication:

⩽ (66)

⩽ (67)

Observe that (66) is an instance of (42), while (67) can be obtained simply by precom-

posing (66) with a permutation. The inverse inequation does not hold.

Another law, which is useful in several occasions, is

=

which can be derived by:

(38)

=
bialgebra

=

(38)

=
naturality

=

†
=

Additive arrows. We now study general properties of the arrows in FCM+ . An arrow

𝑅 : 𝑚 → 𝑛 is said to be additive if it satisfies the two inequations:

R

R

⩽ R (68)

⩽ R (69)
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In Rel, a relation 𝑅 is additive when it is closed with respect to the structure of a monoid

(𝑋,+, 0), that is: (a) if (𝑥1, 𝑦1) ∈ 𝑅 and (𝑥2, 𝑦2) ∈ 𝑅, then (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) ∈ 𝑅 and (b)

(0, 0) ∈ 𝑅 for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑋 .

An additive arrow is, therefore, an oplax white monoid homomorphism. The fact

that it is also an oplax white comonoid homomorphism easily follows from the fact that

white multiplication and unit are maps. Indeed:

R

R

(55)

⩽
R

R

(68)

⩽ R
(60)

= R

(57)

⩽

(69)

⩽ R
(58)

⩽ R

Lemma 7.1. If 𝑅 is additive, then 𝑅† is additive.

Proof. Trivial by using the inequations above. □

Lemma 7.2. Let 𝑅 and 𝑆 be two arrows.

If 𝑅 and 𝑆 are additive then 𝑅 ; 𝑆 and 𝑅 ⊕ 𝑆 are additive.

Proof. Trivial by definition. □

Proposition 7.3. All arrows in FCM+ are additive.

Proof. The proof proceeds by induction on FCM+ . For the inductive cases, we use

Lemma 7.2. For the base cases, we proceed with a case analysis. We show the cases for

both , , , and , , , . The latter are redundant by

Lemma 7.1, but this extended case analysis will turn out to be useful later on.

• For :

⩽ ⩽

• For :

⩽ ⩽
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• For :

⩽ ⩽

• For :

⩽ id0 ⩽

The inequations that we have displayed so far are rather trivial. Those for their opposite

are much more interesting.

• For :

⩽ ⩽

• For :

⩽ ⩽

• For :

⩽ ⩽

• For :

⩽ id0 ⩽

□

Remark 7.4. The second sets of inequations in the above proof contains several of those

that we have proved in the main text of this section, e.g., the lax bialgebra for the white

structure. Observe that these follow from Lemma 7.1 and the first sets of inequations.

This is a more efficient and more structured way to prove those laws. We decided to

keep the direct derivations for the sake of exposition.
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White convolution. Previously we showed that in any cartesian bicategory of re-

lations, every hom-set carries a meet-semilattice structure. In FCM+ this is actually a

lattice. Given arrows 𝑅 : 𝑚 → 𝑛 and 𝑆 : 𝑚 → 𝑛 we define the white convolution of 𝑅

and 𝑆 , written 𝑅 > 𝑆 , by:

𝑅 > 𝑆
def

=
m nR

S

Lemma 7.5. Convolution is associative, commutative, idempotent and unital. Its unit is:

⊥𝑚,𝑛

def
=

m n

Proof. The proof for associativity, commutativity and unitality is trivial. For idempo-

tency, we use Proposition 7.3:

R

R

(68)

⩽ R
(60)

= R

R
(9)

=
R (69)

⩽
R

R

(58)

⩽
R

R

□

Since > is associative, commutative and idempotent, it induces an ordering. In the

following, we show that this ordering is exactly ⩽.

Lemma 7.6. For all arrows 𝑅 : 𝑛 →𝑚, we have ⊥𝑚;𝑛 ⩽ 𝑅.

Proof.

(69)

⩽ R
(58)

⩽ R

□

Lemma 7.7. 𝑅 > 𝑆 = 𝑅 if and only if 𝑆 ⩽ 𝑅.

Proof. Assume 𝑅 > 𝑆 = 𝑅. Then 𝑆 = ⊥ > 𝑆 ⩽ 𝑅 > 𝑆 = 𝑅. Assume 𝑆 ⩽ 𝑅. Then

𝑅 > 𝑆 ⩽ 𝑅 > 𝑅 = 𝑅. Moreover 𝑅 = 𝑅 > ⊥ ⩽ 𝑅 > 𝑆 . □
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Corollary 7.8. The partial order ⩽ is a lattice with top and bottom.

The following fact holds in any lattice.

Lemma 7.9. 𝑅 ? (𝑆 >𝑇 ) ⩾ (𝑅 ? 𝑆) > (𝑅 ?𝑇 ) and 𝑅 > (𝑆 ?𝑇 ) ⩽ (𝑅 > 𝑆) ? (𝑅 >𝑇 ).

Two other useful properties are displayed below.

Lemma 7.10. (𝑅 > 𝑆) ;𝑇 ⩾ (𝑅 ;𝑇 ) > (𝑆 ;𝑇 ) and 𝑇 ; (𝑅 > 𝑆) ⩾ (𝑇 ; 𝑅) > (𝑇 ; 𝑆).

Proof. It follows immediately from the fact that 𝑅, 𝑆 and 𝑇 are additive. □

Lemma 7.11. (𝑅 > 𝑆)† = 𝑅† > 𝑆†.

Proof. Trivial by definition. □

Involution. For every arrow𝑅, we define𝑅◦
as the arrow that is obtained by switching

white and black coloring. To be more formal (−)◦ : FCM+ → FCM+ is the unique

symmetric monoidal functor switching black and white colouring. This can be defined

inductively: (𝑅 ; 𝑆)◦ = 𝑅◦
; 𝑆◦ and (𝑅 ⊕ 𝑆)◦ = 𝑅◦ ⊕ 𝑆◦ and for the base cases it is just the

switching of colours, e.g., ( )◦ = .

Lemma 7.12. The functor (−)◦ is involutive: (𝑅◦)◦ = 𝑅.

Proof. Trivial by definition. □

Lemma 7.13. (𝑅 > 𝑆)◦ = 𝑅◦ ? 𝑆◦ and (𝑅 ? 𝑆)◦ = 𝑅◦ > 𝑆◦

Proof. Trivial by definition. □

Observe that (−)◦ does not preserve the posetal structure. Indeed, it is not true in

general that 𝑅 ⩽ 𝑆 entails that 𝑆◦ ⩽ 𝑅◦
. Take for instance the black Frobenius equation:

we know that the white Frobenius only holds laxly. We will see in Section 8 that the

involution operator satisfies this property in the context of abelian groups.

The algebra of additive relations. Our set of operations

⊤, ⊥, ?, >, (−)†, (−)◦, ; , id

is similar to the algebra of relations [34]: full relation, empty relation, intersection,

union, inverse, complement, composition and identity relation. While the allegorical

fragment [29] (given by the black structure)

⊤, ?, (−)†, ; , id

coincides exactly with the one in the algebra of relations, the remaining part

⊥, >, (−)◦

is not exactly the same: ⊥ is not the empty relation and > is not the union.

We believe that the connection with relational algebra is worth exploring further.
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Figure 3: The SMIT corresponding to the Frobenius theory of abelian groups is exactly

that of Figure 2 together with the above axioms.

8 The theory of abelian groups
Recall the cartesian theory of abelian groups AG (Example 4.16(b)). In this section

we study the Frobenius theory AG+
obtained by adding to AG Inequations (26)–(29)

of Example 3.3(e) (oplax bialgebras) and the following two inequalities stating that the

antipode is a map (single valued and total):

⩽ (70)

⩽ (71)

The corresponding SMIT is shown in Figure 3. As usual, we adopt the graphical

convention:

::=
( )†

One may demonstrate that the antipode is its own inverse by the derivation

unitality

=
(21)

=

associativity

=

(70)

=
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(21)

=
(71)

=

unitality

= (72)

which immediately implies that the antipode is injective and surjective and, by Corol-

lary 4.9, that = . This fact justifies adopting the graphical notation:

::= =

We now investigate how the antipode interacts with the white monoid. The following

derivation shows that it distributes over the white unit:

(18)

=
(21)

=
(16)

=
(9)

= (73)

The same happens for the white multiplication. To show this, recall the “De Morgan”

property:

= (74)

First, we prove (74):

(70)

⩽
(72)

=

(72)

=
(70)

⩽

Now, it follows that:

(74)

=
(72)

= (75)

In other words, the antipode is additive.

A useful “quasi-Frobenius” interaction between the white and black structures is:

= (76)

To see this, let:

A2 2
:= B2 2

:=
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Now it is easy to show that 𝐴 ; 𝐵 = 𝐵 ; 𝐴 = id2. By the conclusion of Lemma 4.8, it

follows that

A2 2 = B2 2

which is just (76).

Another important law is

= (77)

which follows from (76) by:

Frobenius

=
(76)

=
unitality

=

Proposition 8.1. White monoid and comonoid form a Frobenius structure.

Proof. Since the black structure is Frobenius, it suffices to show:

(76)

=
unitality

=

associativity

=
unitality

=

(76)

=

□

An alternative presentation. Thanks to Proposition 8.1, it is easy to see that all the

(in)equations in Figure 4 hold in FAG+ . Actually, one can prove that the ordered PROP

freely generated by the SMIT in Figure 4 is isomorphic to FAG+ : it is enough to define

the antipode as either of the following (equivalent) terms

=
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and check that the (in)equations in Figure 3 are entailed by those in in Figure 4. From

the isomorphism, it follows that FAG+ is an abelian bicategory [18].

Involution. Involution on FCM+can be easily extended to FAG+ by defining

( )◦ ::= .

Now, the fact that white monoid and white comonoid form a special Frobenius algebra

gives us the following important proposition.

Proposition 8.2. 𝑅 ⩽ 𝑆 if and only if 𝑅◦ ⩾ 𝑆◦.

Proof. It is enough to check that, for each of the inequation 𝑅 ⩽ 𝑆 in the axiomatization

in Figure 3, 𝑅◦ ⩽ 𝑆◦ holds. □

The above proposition can be used as an effective proof technique. For instance, to

prove that

=

it is enough to recall Equation (62) and apply Proposition 8.2.

Since the antipode is a homomorphism of the white monoid (see (73) and (75)), it

is an additive arrow. By induction and Lemma 7.2, one can easily prove that all the

morphisms in FAG+ are additive. As a consequence, all the results about >, ⊥, ?, ⊤,

and (−)◦ proved for commutative monoids, still hold for abelian groups. Observe that

these operators do not form a Boolean algebra as > and ? distribute over each other

only laxly. Other axioms of Boolean algebras that fail are 𝑅 ? 𝑅◦ = ⊥ and 𝑅 > 𝑅◦ = ⊤:

to see this, it is enough to take 𝑅 = id.

Antipodal arrows. Since the white structure forms a special Frobenius algebra,

it induces a compact closed structure and a contravariant monoidal 2-functor (−)‡
mapping every arrow 𝑅 to

𝑅‡
::= R .

In order to prove 𝑅‡ = 𝑅†
, we will show that it is sufficient for 𝑅 to be antipodal, that is

R ⩽ R

which entails

R = R .

So 𝑅 is antipodal if and only if it is an homomorphism with respect to the antipode.
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Figure 4: An alternative presentation for the SMIT of abelian groups.
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Proposition 8.3. If 𝑅 is antipodal, then 𝑅† = 𝑅‡.

Proof.

R
(77)

= R

assumption

= R
(72)

= R

□

Proposition 8.4. If 𝑅 is additive and antipodal, then the following hold:

R

R
⩽ R iff RЯ ⩽

iff R ⩽ (Single Valued)

⩽ R iff ⩽ R Я

iff R ⩽
R

R

(Total)

⩽ R iff ⩽ RЯ

iff R ⩽
R

R
(Surjective)

R

R

⩽ R iff R Я ⩽

iff R ⩽ (Injective)

Proof. Since 𝑅 is antipodal, by Proposition 8.3, 𝑅† = 𝑅‡
: we can refer to the black and

white compact closed structure as the same thing.
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The axioms of cartesian bicategories imply that 𝑅 is a lax black comonoid and lax

monoid homomorphism. This fact, together with the black Frobenius structure was used

in Lemma 4.4 to establish the iff between the first two columns in the four rows above.

Since 𝑅 is additive and has zero, it is a oplax white monoid (by definition) and an

oplax white comonoid homomorphism (Lemma 7.1).

To prove the iff between the third and the second column, it is enough to repeat

exactly the same proofs of Lemma 4.4 by exchanging colours and the direction of ⩽
and ⩾. For instance, the iff between the second and the third column in (Single Valued)

can be retrieved by the iff between the second and the first column in (Surjective). □

Proposition 8.5. All arrows in FAG+ are additive and antipodal.

Proof. By induction. The cases are given by Lemma 7.2, and can be easily extended to take

into account antipodality. For the base cases, one can just use those of Proposition 7.3

and observe that every operation of the theory is an antipode homomorphism. □

Cancellation. We conclude this section by introducing the cancellation proof tech-

nique that will be useful for proving properties about modules in the next section.

Proposition 8.6. Let 𝑅 and 𝑆 be arrows in FAG+ and 𝑋 be a map. If

R

X
=

S

X

then

R = S .

Proof.

R
unitality

=
R 𝑋 is total

=
R

X

(21)

=

R

X

associativity

=

R

X

X

assumption

=

S

X

X

= · · · = S .

□
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9 The theory of R-modules
Let R be a ring. In order to avoid the distinction between left and right modules,

we assume R to be commutative. We now illustrate the Frobenius theory of modules

over R.

All we have to do is to follow the standard recipe of extending the theory of abelian

groups with a scalar operator k : 1 → 1 for each 𝑘 ∈ R, impose the usual four

axioms for modules and, additionally, require that scalars are maps. The inequations (of

the corresponding SMIT) are summarised in Figure 5. We call the underlying Frobenius

theory MOD+
R and the freely generated Carboni–Walters category FMOD+

R
.

At first, we observe that the following two important equalities hold:

0 =

�1 =

They can be proved by using Proposition 8.6 and the two derivations:

= = 1 =
1

0
=

0

1

�1
= 0 = = =

1

These two simple facts entail that the Carboni–Walters category for the theory of abelian

groups is isomorphic to the one for the theory of modules over the ring of integers Z.

Theorem 9.1. FAG � FMOD+
Z

.

Observe that every scalar is — by the (in)equations in Figure 5 — total and single

valued. Usually, they are not injective and surjective. However if R is a field, every

non-zero scalar 𝑘 is both injective and surjective:

1/kk = = 1/k k . (78)

By Corollary 4.9, this means that:

k = 1/k . (79)

This is what happens in the category IHR of Interacting Hopf algebras over R [13].

Theorem 9.2. If R is a field, then IHR � FMOD+
R
.
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Figure 5: The SMIT corresponding to the Frobenius theory of R-Modules.
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Proof. It is enough to check that all the equations in Figure 5 entails those in axioms of

IHR and vice-versa. □

Since modules over a field are just vector spaces, we obtain a surprising result.

Corollary 9.3. If R is a field, then ModFROB (IHR,Rel) is the category of vector spaces
and linear maps over R.

We conclude our work with an observation.

Field of fractions. Now we assume R to be an ideal domain. Note that this is not

necessarily principal as required in [13].

Since R is an ideal domain, we can build its field of fractions FR(R): elements are

pairs 𝑝/𝑞 of elements of R with 𝑞 ≠ 0 quotiented by the equivalence ≡ defined as

𝑝1/𝑞1 ≡ 𝑝2/𝑞2 if and only if 𝑝1 × 𝑞2 = 𝑝2 × 𝑞1. Sum and multiplication are defined as

𝑝1/𝑞1 + 𝑝2/𝑞2 = 𝑝1 × 𝑞2 + 𝑝2 × 𝑞1/𝑞1 × 𝑞2 and 𝑝1/𝑞1 × 𝑝2/𝑞2 = 𝑝1 × 𝑝2/𝑞1 × 𝑞2. In the

following, we will often use the morphism of rings (−)/1 : R → FR(R) mapping any

𝑘 ∈ R into 𝑘/1.

We now show that the theory of modules over FR(R) can be retrieved by the one of

modules over R by additionally requiring that every non-zero scalar is both injective

and surjective. To be entirely formal, we call MODISR the theory MOD+
R extended with

the inequations

ll ⩽ ⩽ ll (80)

for each scalar 𝑙 ∈ R different than 0.

Theorem 9.4. Let R be an ideal domain. Then FMOD+
FR(R)
� FMODISR .

Proof. As a first step, we define a cartesian bifunctor 𝜄 : FMODISR → FMOD+
FR(R)

by

induction. The inductive cases are given by the fact that it should preserve ; and ⊕. For

the base cases, 𝜄 maps the scalars along (−)/1 : R → FR(R) and for all the others, it

behaves as the identity.

To prove that this is well-defined, we check that, for all 𝑅, 𝑆 ∈ FMODISR ,

if 𝑅 ⩽ 𝑆 , then 𝜄 (𝑅) ⩽ 𝜄 (𝑆). (𝛼)

To prove this, it is enough to check that (𝛼) holds for each of the inequation of MODISR.

For inequations that do not involve scalars, (𝛼) is trivial. For the axioms that do involve

scalars, we have two cases:

(a) If 𝑅 ⩽ 𝑆 is an axiom in (80), then it holds in FMOD+
FR(R)

by (78) since FR(R) is a

field.

(b) If 𝑅 ⩽ 𝑆 is an axiom in Figure 5, then it holds since (−)/1 : R → FR(R) is a

morphism of rings.
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The next step is to define𝜅 : FMOD+
FR(R)

→ FMODISR by induction. Again the inductive

cases are fixed. For the base cases, 𝜅 maps each scalar 𝑝/𝑞 ∈ FR(R) into

p q

and, for all the others, it behaves as the identity. Observe that ≡ is preserved by 𝜅: if

𝑝1/𝑞1 ≡ 𝑝2/𝑞2, then 𝑝1𝑞2 = 𝑝2𝑞1 and therefore

p1 q1 = p1 q2 q2 q1 = p2 q1 q2 q1

= p2 q1 q2q1 = p2 q2 .

Again, to prove that 𝜅 is well defined, it is enough to inspect the axioms concerning the

scalars in Figure 5. For a scalar 𝑝/𝑞 ∈ FR(R), the first axioms of the first and second

rows hold in FMODISR , since 𝑞 ≠ 0 and (80) entails that q is a black comonoid

homomorphism. For the same reason, q is also a white monoid homomorphism and

thus it is easy to see that also the second axiom of the second row also holds in FMODISR .

The remaining axioms are easily proved using the definition of sum and multiplication

in FR(R).
To conclude it is enough to prove that 𝜄 ◦ 𝜅 = id and 𝜅 ◦ 𝜄 = id. For both, the proof

proceeds by induction. The only interesting cases are the scalars: for 𝜅 ◦ 𝜄 = id, the proof

is straightforward; for 𝜄 ◦ 𝜅 = id, the proof uses that (79) holds in FMOD+
FR(R)

. □
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