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Abstract

This article is devoted to the study of a new minimum fractional Hardy–Hilbert

integral inequality. A comprehensive theoretical framework is developed, accompa-

nied by a detailed proof. In addition, two auxiliary results are presented to illustrate

the applicability and relevance of the main theorem.
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1 Introduction
Hardy–Hilbert-type integral inequalities have long occupied a central place in

mathematical analysis. They play a particularly important role in the study of integral

operators and functional inequalities. They also feature in numerous applications in the

fields of harmonic analysis and partial differential equations. Since the pioneering work

of Hardy, Hilbert and their contemporaries, these inequalities have been the subject of

extensive generalizations and refinements, giving rise to a rich and continually evolving

theoretical framework. Further information can be found in the books [6, 20, 21, 22],

supplemented by the survey [4].

Considerable effort has recently been devoted to developing new variants of Hardy–

Hilbert-type integral inequalities involving fractional, weighted and multilinear struc-

tures. These generalizations broaden the scope of classical inequalities. Among these

developments, maximum- and minimum-type extensions have attracted particular at-

tention due to their potential applications in the study of analytic inequalities, operator

theory, and special functions. Notable contributions can be found in [19, 8, 9, 1, 13, 15,

17, 18, 16, 14, 5, 2, 11, 7, 3, 12, 10].

This article focuses on establishing a new minimum fractional Hardy–Hilbert-type

integral inequality. Our approach builds upon and extends existing techniques, incorpo-

rating a more detailed analysis of parameter ranges and integrability conditions. The

main contribution of this article is the formulation and proof of a sharp inequality

involving a double integral and a minimum function of the ratios 𝑥/𝑦 and 𝑦/𝑥 , an
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exponent parameter, 𝛼 , and two main functions, 𝑓 and 𝑔, i.e.,∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦.

Based on this result, we further derive several secondary, yet new, integral inequalities.

The remainder of the article is organized as follows. Section 2 presents the main

theorem. In Section 3, we develop the secondary results. Finally, Section 4 provides

concluding remarks and outlines possible directions for future research.

2 Main result
Our main result is the theorem stated below.

Theorem 2.1. Let 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 𝛼, 𝛽 > 0 such that 𝛼 > max( |𝛽𝑝 − 1|, |𝛽𝑞 − 1|),
and 𝑓 , 𝑔 : (0,+∞) ↦→ (0,+∞) be two functions. Then we have∫

(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑦𝑔𝑞 (𝑦)𝑑𝑦

]
1/𝑞

provided that the two integrals involved in the upper bound converge.

Proof. By suitably decomposing the integrand via the identity

1 =

(
𝑥

𝑦

)𝛽 (𝑦
𝑥

)𝛽
and applying the Hölder integral inequality with exponents satisfying 1/𝑝 + 1/𝑞 = 1,

we obtain ∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

=

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼/𝑝 (
𝑥

𝑦

)𝛽
𝑓 (𝑥)

×
[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼/𝑞 (𝑦
𝑥

)𝛽
𝑔(𝑦)𝑑𝑥𝑑𝑦

⩽ A1/𝑝B1/𝑞
(1)
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where A and B are given by

A =

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼 (
𝑥

𝑦

)𝛽𝑝
𝑓 𝑝 (𝑥)𝑑𝑥𝑑𝑦,

B =

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼 (𝑦
𝑥

)𝛽𝑞
𝑔𝑞 (𝑦)𝑑𝑥𝑑𝑦.

Let us now examine the exact expressions for A and B sequentially.

Applying the Fubini–Tonelli integral theorem (which is possible because the inte-

grand is non-negative), we can express A as

A =

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥)
{∫

(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼 (
𝑥

𝑦

)𝛽𝑝
1

𝑥
𝑑𝑦

}
𝑑𝑥 .

Let us now concentrate on the integral term with respect to 𝑦. Making the change

of variables 𝑢 = 𝑦/𝑥 and applying standard integration techniques, together with the

condition 𝛼 > |𝛽𝑝 − 1| (which implies 𝛼 − 𝛽𝑝 + 1 > 0 and −𝛼 − 𝛽𝑝 + 1 < 0), we obtain∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼 (
𝑥

𝑦

)𝛽𝑝
1

𝑥
𝑑𝑦 =

∫
(0,+∞)

[
min

(
1

𝑢
,𝑢

)]𝛼
1

𝑢𝛽𝑝
𝑑𝑢

=

∫
(0,1)

[
min

(
1

𝑢
,𝑢

)]𝛼
1

𝑢𝛽𝑝
𝑑𝑢 +

∫
(1,+∞)

[
min

(
1

𝑢
,𝑢

)]𝛼
1

𝑢𝛽𝑝
𝑑𝑢

=

∫
(0,1)

𝑢𝛼 × 1

𝑢𝛽𝑝
𝑑𝑢 +

∫
(1,+∞)

1

𝑢𝛼
× 1

𝑢𝛽𝑝
𝑑𝑢

=

∫
(0,1)

𝑢𝛼−𝛽𝑝𝑑𝑢 +
∫
(1,+∞)

𝑢−𝛼−𝛽𝑝𝑑𝑢

=

[
1

𝛼 − 𝛽𝑝 + 1

𝑢𝛼−𝛽𝑝+1

]
(0,1)

+
[

1

−𝛼 − 𝛽𝑝 + 1

𝑢−𝛼−𝛽𝑝+1

]
(1,+∞)

=
1

𝛼 − 𝛽𝑝 + 1

+ 1

𝛼 + 𝛽𝑝 − 1

=
2𝛼

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1) .

Therefore, we have

A =

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥) 2𝛼

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1)𝑑𝑥

=
2𝛼

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1)

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥)𝑑𝑥 . (2)

For B, proceeding analogously, we obtain

B =

∫
(0,+∞)

𝑦𝑔𝑞 (𝑦) 2𝛼

(𝛼 − 𝛽𝑞 + 1) (𝛼 + 𝛽𝑞 − 1)𝑑𝑦

=
2𝛼

(𝛼 − 𝛽𝑞 + 1) (𝛼 + 𝛽𝑞 − 1)

∫
(0,+∞)

𝑦𝑔𝑞 (𝑦)𝑑𝑦. (3)
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Joining Equations (1), (2) and (3), we get∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

⩽
[

2𝛼

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1)

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥)𝑑𝑥
]

1/𝑝

×
[

2𝛼

(𝛼 − 𝛽𝑞 + 1) (𝛼 + 𝛽𝑞 − 1)

∫
(0,+∞)

𝑦𝑔𝑞 (𝑦)𝑑𝑦
]

1/𝑞

=
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑦𝑔𝑞 (𝑦)𝑑𝑦

]
1/𝑞

.

This concludes the proof of Theorem 2.1. □

Remark 2.2. Using the following classical minimum formula: min(𝑎, 𝑏) = (1/2) [𝑎 + 𝑏 −
|𝑎 − 𝑏 |], with 𝑎, 𝑏 ∈ R, another formulation of the inequality in Theorem 2.1 is∫

(0,+∞)

∫
(0,+∞)

[
𝑥

𝑦
+ 𝑦

𝑥
−
����𝑥𝑦 − 𝑦

𝑥

����]𝛼 𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

⩽
2
𝛼+1𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑦𝑔𝑞 (𝑦)𝑑𝑦

]
1/𝑞

.

Remark 2.3. If we take 𝑝 = 2 (so 𝑞 = 2), under the condition 𝛼 > |2𝛽 − 1|, the inequality

in Theorem 2.1 becomes∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼

𝛼2 − (2𝛽 − 1)2

[∫
(0,+∞)

𝑥 𝑓 2 (𝑥)𝑑𝑥
]

1/2
[∫

(0,+∞)
𝑦𝑔2 (𝑦)𝑑𝑦

]
1/2

.

To the best of our knowledge, Theorem 2.1 introduces a new minimum fractional

Hardy–Hilbert-type integral inequality to the literature. We emphasize its flexibility,

which comes from the adjustable parameters 𝛼 and 𝛽 , as well as the clear and tractable

condition 𝛼 > max ( |𝛽𝑝 − 1|, |𝛽𝑞 − 1|). Several related results derived from this theorem

constitute the focus of the remainder of the article.

3 Secondary results
The theorem below establishes an integral inequality involving a single function,

obtained as a direct consequence of Theorem 2.1.
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Theorem 3.1. Let 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 𝛼, 𝛽 > 0 such that 𝛼 > max( |𝛽𝑝 − 1|, |𝛽𝑞 − 1|),
and 𝑓 , 𝑔 : (0,+∞) ↦→ (0,+∞) be two functions. Then we have∫

(0,+∞)
𝑦−(𝑝−1)

[∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝
𝑑𝑦

⩽
(2𝛼)𝑝

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1) (𝛼 − 𝛽𝑞 + 1)𝑝−1 (𝛼 + 𝛽𝑞 − 1)𝑝−1

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

provided that the integral involved in the upper bound converges.

Proof. Let us set

C =

∫
(0,+∞)

𝑦−(𝑝−1)
[∫

(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝
𝑑𝑦.

We can write

C =

∫
(0,+∞)

[∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

] [
𝑦−1

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝−1

𝑑𝑦

=

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔† (𝑦)𝑑𝑥𝑑𝑦 (4)

where

𝑔† (𝑦) =
[
𝑦−1

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝−1

.

Applying Theorem 2.1 to 𝑓 and 𝑔†, we obtain∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑔† (𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑦𝑔

𝑞

† (𝑦)𝑑𝑦
]

1/𝑞
. (5)

Moreover, using 𝑞(𝑝 − 1) = 𝑝 , we have∫
(0,+∞)

𝑦𝑔
𝑞

† (𝑦)𝑑𝑦 =

∫
(0,+∞)

𝑦

[
𝑦−1

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑞 (𝑝−1)
𝑑𝑦

=

∫
(0,+∞)

𝑦

[
𝑦−1

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝
𝑑𝑦

=

∫
(0,+∞)

𝑦−(𝑝−1)
[∫

(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝
𝑑𝑦

= C. (6)
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Joining Equations (4), (5) and (6), we get

C ⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝

C1/𝑞 .

Using 1 − 1/𝑞 = 1/𝑝 , we obtain

C1/𝑝 ⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝

.

Raising both sides at the exponent 𝑝 , and taking into account the definition of C and

that 𝑝/𝑞 = 𝑝 − 1, we obtain∫
(0,+∞)

𝑦−(𝑝−1)
[∫

(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]𝑝
𝑑𝑦

⩽
(2𝛼)𝑝

(𝛼 − 𝛽𝑝 + 1) (𝛼 + 𝛽𝑝 − 1) (𝛼 − 𝛽𝑞 + 1)𝑝−1 (𝛼 + 𝛽𝑞 − 1)𝑝−1

∫
(0,+∞)

𝑥 𝑓 𝑝 (𝑥)𝑑𝑥 .

This completes the proof of Theorem 3.1. □

Remark 3.2. If we take 𝑝 = 2, under the condition 𝛼 > |2𝛽 − 1|, the inequality in

Theorem 3.1 becomes∫
(0,+∞)

𝑦−1

[∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓 (𝑥)𝑑𝑥

]
2

𝑑𝑦

⩽
(2𝛼)2

[𝛼2 − (2𝛽 − 1)2]2

∫
(0,+∞)

𝑥 𝑓 2 (𝑥)𝑑𝑥 .

The theorem below is analogous to Theorem 2.1, but it involves the primitives of the

main functions. The resulting bound is expressed in terms of the unweighted integral

norms of these functions. It is obtained as a consequence of Theorem 2.1 combined with

the classical Hardy integral inequality (see [6]).

Theorem 3.3. Let 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 𝛼, 𝛽 > 0 such that 𝛼 > max( |𝛽𝑝 − 1|, |𝛽𝑞 − 1|),
𝑓 , 𝑔 : (0,+∞) ↦→ (0,+∞) be two functions, and, for any 𝑥 > 0,

𝐹 (𝑥) =
∫ 𝑥

0

𝑓 (𝑡)𝑑𝑡, 𝐺 (𝑥) =
∫ 𝑥

0

𝑔(𝑡)𝑑𝑡,
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provided that the two integrals converge. Then we have∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑥−1−1/𝑝𝐹 (𝑥)𝑦−1−1/𝑞𝐺 (𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼𝑝2

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞 (𝑝 − 1)

×
[∫

(0,+∞)
𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑔𝑞 (𝑦)𝑑𝑦

]
1/𝑞

provided that the two integrals involved in the upper bound converge.

Proof. We can write∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑥−1−1/𝑝𝐹 (𝑥)𝑦−1−1/𝑞𝐺 (𝑦)𝑑𝑥𝑑𝑦

=

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓⋄ (𝑥)𝑔⋄ (𝑦)𝑑𝑥𝑑𝑦 (7)

where

𝑓⋄ (𝑥) = 𝑥−1−1/𝑝𝐹 (𝑥), 𝑔⋄ (𝑦) = 𝑦−1−1/𝑞𝐺 (𝑦).

Applying Theorem 2.1 to 𝑓⋄ and 𝑔⋄ , we obtain∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑓⋄ (𝑥)𝑔⋄ (𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[∫

(0,+∞)
𝑥 𝑓

𝑝
⋄ (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑦𝑔

𝑞
⋄ (𝑦)𝑑𝑦

]
1/𝑞

. (8)

Applying the classical Hardy integral inequality to 𝑓 , we obtain∫
(0,+∞)

𝑥 𝑓
𝑝
⋄ (𝑥)𝑑𝑥 =

∫
(0,+∞)

𝑥 [𝑥−1−1/𝑝𝐹 (𝑥)]𝑝𝑑𝑥 =

∫
(0,+∞)

𝑥−𝑝𝐹𝑝 (𝑥)𝑑𝑥

⩽
(

𝑝

𝑝 − 1

)𝑝 ∫
(0,+∞)

𝑓 𝑝 (𝑥)𝑑𝑥. (9)

Similarly, using 𝑝 = 𝑞/(𝑞 − 1), we get∫
(0,+∞)

𝑦𝑔
𝑞
⋄ (𝑦)𝑑𝑦 =

∫
(0,+∞)

𝑦 [𝑦−1−1/𝑞𝐺 (𝑦)]𝑞𝑑𝑦 =

∫
(0,+∞)

𝑦−𝑞𝐺𝑞 (𝑦)𝑑𝑦

⩽
(

𝑞

𝑞 − 1

)𝑞 ∫
(0,+∞)

𝑔𝑞 (𝑦)𝑑𝑦 = 𝑝𝑞
∫
(0,+∞)

𝑔𝑞 (𝑦)𝑑𝑦. (10)
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Joining Equations (7), (8), (9) and (10), we find that∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑥−1−1/𝑝𝐹 (𝑥)𝑦−1−1/𝑞𝐺 (𝑦)𝑑𝑥𝑑𝑦

⩽
2𝛼

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞

×
[(

𝑝

𝑝 − 1

)𝑝 ∫
(0,+∞)

𝑓 𝑝 (𝑥)𝑑𝑥
]1/𝑝 [

𝑝𝑞
∫
(0,+∞)

𝑔𝑞 (𝑦)𝑑𝑦
]

1/𝑞

=
2𝛼𝑝2

(𝛼 − 𝛽𝑝 + 1)1/𝑝 (𝛼 + 𝛽𝑝 − 1)1/𝑝 (𝛼 − 𝛽𝑞 + 1)1/𝑞 (𝛼 + 𝛽𝑞 − 1)1/𝑞 (𝑝 − 1)

×
[∫

(0,+∞)
𝑓 𝑝 (𝑥)𝑑𝑥

]
1/𝑝 [∫

(0,+∞)
𝑔𝑞 (𝑦)𝑑𝑦

]
1/𝑞

.

This concludes the proof of Theorem 3.3. □

Remark 3.4. If we take 𝑝 = 2, under the condition 𝛼 > |2𝛽 − 1|, the inequality in

Theorem 3.3 becomes∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥

)]𝛼
𝑥−3/2𝐹 (𝑥)𝑦−3/2𝐺 (𝑦)𝑑𝑥𝑑𝑦

⩽
8𝛼

𝛼2 − (2𝛽 − 1)2

[∫
(0,+∞)

𝑓 2 (𝑥)𝑑𝑥
]

1/2
[∫

(0,+∞)
𝑔2 (𝑦)𝑑𝑦

]
1/2

.

To the best of our knowledge, like Theorem 2.1, Theorem 3.3 introduces another

new Hardy–Hilbert-type integral inequality to the literature.

4 Conclusion
In this article, we have established a new minimum fractional Hardy–Hilbert-type

integral inequality. It provides a sharp bound that depends on a minimum function

of the ratios 𝑥/𝑦 and 𝑦/𝑥 as well as a key parameter, 𝛼 , and two main functions, 𝑓

and 𝑔. Building on this main theorem, several secondary inequalities were derived,

highlighting the versatility of the approach and its potential for further generalizations.

Future work could explore multidimensional extensions, such as a sharp upper bound

for a triple integral of the form∫
(0,+∞)

∫
(0,+∞)

∫
(0,+∞)

[
min

(
𝑥

𝑦
,
𝑦

𝑥
,
𝑥

𝑧
,
𝑧

𝑥
,
𝑦

𝑧
,
𝑧

𝑥

)]𝛼
𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧)𝑑𝑥𝑑𝑦𝑑𝑧.

In addition, we could consider applications in operator theory and its connections with

fractional differential equations and other areas of functional analysis.
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