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Abstract

We develop a new algorithm for factoring a bivariate polynomial 𝐹 ∈ K[𝑥,𝑦]
which takes full advantage of the geometry of the Newton polygon of 𝐹 . Under some

non degeneracy hypothesis, the complexity is
˜O(𝑉𝑟𝜔−1

0
) where 𝑉 is the volume of

the polygon and 𝑟0 is its minimal lower lattice length. The integer 𝑟0 reflects some

combinatorial constraints imposed by the polygon, giving a reasonable and easy-to-

compute upper bound for the number of non trivial indecomposable Minkowski

summands. The proof is based on a new fast factorization algorithm in K[[𝑥]] [𝑦]
with respect to a slope valuation, a result which has its own interest.

1 Introduction
Factoring a bivariate polynomial 𝐹 ∈ K[𝑥,𝑦] over a field K is a fundamental task

of computer algebra which has received particular attention since the 1970s. We refer

the reader to [10, Chapter III] and [6, 7, 11, 13] for a detailed historical account and an

extended bibliography on the subject. For a dense polynomial of bidegree (𝑑𝑥 , 𝑑𝑦), the

current complexity is O(𝑑𝑥𝑑𝜔𝑦 ) plus one univariate factorization of degree 𝑑𝑦 [11, 13].

Here, 2 ⩽ 𝜔 ⩽ 3 is so that we can multiply 𝑛×𝑛 matrices over K with O(𝑛𝜔 ) operations

in K. The current theoretical bound is 𝜔 ≈ 2.371 [25], although 𝜔 is in practice closer

to 3 in most software implementations.

In this paper, we will focus on finer complexity indicators attached to the Newton

polygon 𝑁 (𝐹 ), convex hull of the set of exponents of 𝐹 . The polynomial 𝐹 is assumed

to be represented by the list of its coefficients associated to the lattice points of 𝑁 (𝐹 ),
including zero coefficients. Following [2], we talk of convex-dense representation. As-

suming 𝑁 (𝐹 ) is two-dimensional, the size of 𝐹 can also be measured as the Euclidean

volume 𝑉 of 𝑁 (𝐹 ) by Pick’s formula.

Various convex-dense factorization algorithms have been proposed in the last two

decades, see e.g. [1, 2, 22, 23] and references therein. In [2], the authors compute in

softly linear time a map 𝜏 ∈ Aut(Z2) so that the volume of 𝜏 (𝑁 (𝐹 )) is comparable to the

volume of its bounding rectangle. Applying a classical dense algorithm on the resulting
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polynomial 𝜏 (𝐹 ), they get a complexity estimate O(𝑉𝑛𝜔−1) where 𝑛 is the width of the

bounding rectangle, thus recovering the usual cost if 𝐹 is a dense polynomial. However,

this algorithm does not take advantage of the combinatorial constraints imposed by

Ostrowski’s theorem, namely

𝑁 (𝐺𝐻 ) = 𝑁 (𝐺) + 𝑁 (𝐻 )

where + indicates Minkowski sum. Regarding this issue, we developed in [22, 23]

some convex-dense algorithms based on toric geometry which take full advantage of

Ostrowski’s combinatorial constraints. Unfortunately, these algorithms only work in

characteristic zero and the complexity is not optimal.

In this note, we intend to show that under some non degeneracy hypothesis, it is in

fact possible to take into account both the volume and Ostrowski’s constraints, includ-

ing arbitrary characteristic. Our complexity improves [2], the gain being particularly

significant when 𝑁 (𝐹 ) has few Minkowski summands.

Complexity model. We work with computation trees [3, Section 4.4]. We use an

algebraic RAM model, counting only the number of arithmetic operations in K. We

classically denote O() and
˜O() to respectively hide constant and logarithmic factors in

our complexity results ; see e.g. [10, Chapter 25, Section 7]. We use fast multiplication

of polynomials, so that two polynomials in K[𝑥] of degree at most 𝑑 can be multiplied

in softly linear time
˜O(𝑑).

1.1 Fast convex-dense factorization
Let 𝑃 ⊂ R2

be a lattice polygon. Let Λ(𝑃) be the lower boundary of 𝑃 , union of

edges whose inward normal vectors have strictly positive second coordinate. The (lower)
lattice length of 𝑃 is

𝑟 (𝑃) := Card

(
Λ(𝑃) ∩ Z2

)
− 1.

As 𝑟 (𝑃𝑄) = 𝑟 (𝑃) + 𝑟 (𝑄), this integer gives an easy-to-compute upper bound for the

number of indecomposable Minkowski summands of 𝑃 which are not a vertical segment

(computing all Minkowski sum decompositions is NP-complete [9]).

Let 𝐹 =
∑
𝑐𝑖 𝑗𝑥

𝑗𝑦𝑖 ∈ K[𝑥±1, 𝑦±1]. The support of 𝐹 is the set of exponents (𝑖, 𝑗) ∈ Z2

such that 𝑐𝑖 𝑗 ≠ 0. Notice that the exponents of 𝑦 are represented by the horizontal axis.

The Newton polygon 𝑁 (𝐹 ) of 𝐹 is the convex hull of its support and we denote for short

Λ(𝐹 ) its lower boundary.

Definition 1.1. We say that 𝐹 is not degenerated if for all edge 𝐸 ⊂ Λ(𝐹 ), the edge

polynomial 𝑦− ord𝑦 (𝐹𝐸 )𝐹𝐸 is separable in 𝑦, where 𝐹𝐸 :=
∑
(𝑖, 𝑗 ) ∈𝐸∩Z2 𝑐𝑖 𝑗𝑥

𝑗𝑦𝑖 .

Note that 𝐹𝐸 ∈ K[𝑥±1] [𝑦] is quasi-homogeneous, hence its factorization reduces to

a univariate factorization of degree the lattice length of 𝐸.

Let us denote for short 𝑉 = Vol(𝑁 (𝐹 )) and 𝑟 = 𝑟 (𝑁 (𝐹 )). Note that 𝑟 ⩽ 𝑑𝑦 . Due to

Ostrowski’s theorem, 𝑟 is an upper bound for the numbers of irreducible factors of 𝐹 of

positive 𝑦-degree. Our main result is the following.
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Figure 1: A Newton polygon which admits a unique Minkowski sum decomposition.

Theorem 1.2. There exists a deterministic algorithm which given 𝐹 ∈ K[𝑥,𝑦] non
degenerated, computes the irreducible factorization of 𝐹 over K with

1. ˜O(𝑟𝑉 ) + O(𝑟𝜔−1𝑉 ) operations in K if 𝑝 = 0 or 𝑝 ⩾ 4𝑉 , or

2. ˜O(𝑘𝑟𝜔−1𝑉 ) operations in F𝑝 if K = F𝑝𝑘 ,

plus some univariate factorizations over K whose degree sum is 𝑟 .

As in [2], we recover the usual complexity estimate O(𝑑𝑥𝑑𝜔𝑦 ) when 𝐹 is a dense poly-

nomial. However, Theorem 1.2 may improve significantly [2] when 𝐹 is non degenerated,

as illustrated by the following example.

Example 1.3. Let 𝐹 of bidegree (2𝑛, 2𝑛), with Newton polygon

𝑁 (𝐹 ) = Conv

(
(0, 2), (2𝑛, 0), (0, 2𝑛), (2𝑛, 2𝑛)

)
.

The lower lattice length is 𝑟 = 2, which is a very strong combinatorial constraint: there

is a unique Minkowski sum decomposition whose summands have positive volume as

shown by Figure 1.

As the bounding rectangle has size O(𝑉 ), the convex-dense approach of [2] boils

down to the dense algorithm [13]. We get the following complexity estimates:

• Dense [13, 11] or convex-dense [2] algorithms: O(𝑛𝜔+1) operations in K plus one

univariate factorization of degree 2𝑛.

• Theorem 1.2 (assuming 𝐹 non degenerated):
˜O(𝑛2) operations in K plus one

univariate factorization of degree 2.

We get here a softly linear complexity. This is the most significant gain we can get,

including the univariate factorization step.

A weakness of classical algorithms is to perform a shift 𝑥 ↦→ 𝑥 + 𝑥0 to reduce to the

case 𝐹 (0, 𝑦) separable, losing in such a way the combinatorial constraints offered by

𝑁 (𝐹 ). Our approach avoids this shift.
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1.2 Even faster
We can play with affine automorphisms 𝜏 ∈ Aut(Z2) to minimize 𝑟 while keeping𝑉

constant before applying Theorem 1.2. This leads to the concept of minimal lattice length
of a lattice polygon 𝑃 , defined as

𝑟0 (𝑃) := min

{
𝑟 (𝜏 (𝑃)) | 𝜏 ∈ Aut(Z2)

}
. (1)

This integer is easy to compute (Lemma 3.13). Note that 𝑟0 (𝑁 (𝐹 )) can be reached

by several 𝜏 , which can lead to various lower boundaries with lattice length 𝑟0 (see

Example 1.6 below). Let 𝜏 (𝐹 ) be the image of 𝐹 when applying 𝜏 to its monomial

exponents.

Definition 1.4. We say that 𝐹 is minimally non degenerated if 𝜏 (𝐹 ) is non degenerated
for at least one transform 𝜏 reaching 𝑟0.

If 𝐹 is minimally non degenerated, we may apply Theorem 1.2 to 𝜏 (𝐹 ), with same

volume 𝑉 but with smaller 𝑟 . The factorization of 𝐹 is recovered for free from that of

𝜏 (𝐹 ). We thus obtain:

Corollary 1.5. Suppose that 𝐹 ∈ K[𝑥,𝑦] is minimally non degenerated with minimal
lattice length 𝑟0. Then we can factorize 𝐹 with

1. ˜O(𝑟0𝑉 ) + O(𝑟𝜔−1

0
𝑉 ) operations in K if 𝑝 = 0 or 𝑝 ⩾ 4𝑉 , or

2. O(𝑘𝑟𝜔−1

0
𝑉 ) operations in F𝑝 if K = F𝑝𝑘 ,

plus some univariate factorizations over K whose degree sum is 𝑟0.

Notice that similar transforms 𝐹 ↦→ 𝜏 (𝐹 ) are used in [2], but the authors rather

focus on minimizing the size of the bounding rectangle of 𝑁 (𝐹 ), while we focus on

minimizing 𝑟 . The following examples illustrate the differences between these two

approaches.

Example 1.6. Let 0 < 𝑚 < 𝑛 be two integers and suppose that

𝑁 (𝐹 ) = Conv

(
(0, 0), (𝑚, 0), (0,𝑚), (𝑛, 𝑛)

)
,

as represented on the left side of Figure 2. The lower boundary Λ(𝐹 ) is the union

of the yellow and red edges, with lattice length 𝑟 = 𝑚 + gcd(𝑚,𝑛). Applying the

affine automorphism 𝜏 : (𝑖, 𝑗) ↦→ ( 𝑗,𝑚 − 𝑖 + 𝑗), the resulting polygon 𝜏 (𝑁 (𝐹 )) has red

lower boundary, with minimal lattice length 𝑟0 = 𝑔𝑐𝑑 (𝑚,𝑛). The bounding rectangle of

𝜏 (𝑁 (𝐹 )) has volume 2𝑚𝑛 =𝑉 /2, so [2] would apply a dense algorithm on 𝜏 (𝐹 ). We get

the following estimates:

• Dense algorithm [11, 13]: O(𝑛𝜔+1) operations and one univariate factorization of

degree 𝑛.

• Convex-dense algorithm [2]: O(𝑛𝑚𝜔 ) operations and one univariate factorization

of degree 2𝑚.
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Figure 2: The affine automorphism 𝜏 : (𝑖, 𝑗) ↦→ ( 𝑗,𝑚 − 𝑖 + 𝑗).

• Theorem 1.2 (assuming 𝐹 non degenerate): O(𝑛𝑚 gcd(𝑛,𝑚)𝜔−1) operations and

one univariate factorization of degree gcd(𝑚,𝑛).

Again, if gcd(𝑚,𝑛) ≪ 𝑚, our approach will be significantly faster than [2], including

the univariate factorization step. Notice that by symmetry, 𝑟0 is reached also by the

transform 𝜏 ′ which maps the purple edge as the lower convex hull. Hence, even if 𝐹

were “red-edge” degenerated, we would have a second chance that 𝐹 is not “purple-edge”

degenerated, allowing then to apply Corollary 1.5.

In the previous example, the image 𝜏 (𝐹 ) reached simultaneously a minimal lower

lattice length and a bounding rectangle of size O(𝑉 ). The next example illustrates that

this is not always the case.

Example 1.7. Suppose that 𝐹 has Newton polygon 𝑁 (𝐹 ) as represented on the left side

of Figure 3, depending on parameters 𝑘, 𝑛. The bounding rectangle of 𝑁 (𝐹 ) has volume

O(𝑘𝑛2) = O(𝑉 ), so [2] applies a dense algorithm on 𝐹 . Any black edge has lattice

length 𝑛 or 𝑛 + 2 while the red edge has lattice length 𝑟 = 2. We check that the affine

automorphism 𝜏 (𝑖, 𝑗) = (2𝑖 + 𝑗 − 2𝑛,−𝑖 + 𝑘𝑛) sends 𝑁 (𝐹 ) to the right hand polygon,

leading to 𝑟0 = 2. We get the complexity estimates:

• Dense [11, 13] or convex-dense algorithms [2]: O(𝑘𝑛𝜔+1) and one univariate

factorization of degree 4𝑛 + 4.

• Theorem 1.2 (assuming 𝐹 minimally non degenerated):
˜O(𝑘𝑛2) operations and

one univariate factorization of degree 2.

Again, we get a softly linear complexity. This example illustrates the fact that minimizing

the lower lattice length may increase significantly the volume of the bounding rectangle

(𝑘2𝑛2 ≫ 𝑉 ).

Classical fast factorization algorithms are based on a “lifting and recombination”

scheme: factorize 𝐹 inK[[𝑥]] [𝑦] with𝑥-adic precisionO(𝑑𝑥 ) and recombine the analytic

factors into global factors. Example 1.7 shows that we can’t apply this strategy to our
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Figure 3: The affine automorphism 𝜏 : (𝑖, 𝑗) ↦→ (2𝑖 + 𝑗 − 2𝑛,−𝑖 + 𝑘𝑛).

target polynomial 𝜏 (𝐹 ): the analytic factorization with precision 𝑑𝑥 = 𝑘𝑛 would have

size O(𝑘2𝑛2) which does not fit in our aimed bound. To remediate this, we will rather

factorize 𝜏 (𝐹 ) in K[[𝑥]] [𝑦] with respect to another suitable valuation depending on the

polygon. This is the second main result of our paper, that we explain now.

1.3 Fast valuated analytic factorization
Let 𝜆 ∈ Q and let 𝑣𝜆 stands for the valuation

𝑣𝜆 : K((𝑥)) [𝑦] → Q, 𝑣𝜆 (
∑︁

𝑐𝑖 𝑗𝑥
𝑗𝑦𝑖 ) := min( 𝑗 + 𝑖𝜆, 𝑐𝑖 𝑗 ≠ 0), (2)

with convention 𝑣𝜆 (0) =∞. If 𝐹 ∈ K((𝑥)) [𝑦], the lower convex hull Λ = Λ(𝐹 ) is well

defined, and Definition 1.1 still makes sense in this larger ring. We denote

𝑚𝜆 (𝐹 ) = max

(𝑖, 𝑗 ) ∈Λ
( 𝑗 + 𝑖𝜆) − 𝑣𝜆 (𝐹 ). (3)

Note that 𝑚𝜆 (𝐹 ) ⩾ 0, with equality if and only if Λ(𝐹 ) is straight of slope −𝜆. We

measure the quality of the 𝑣𝜆-approximation of 𝐹 by a polynomial 𝐺 by the relative

quantity 𝑣𝜆 (𝐹 −𝐺) − 𝑣𝜆 (𝐹 ). We prove:

Theorem 1.8. Let 𝐹 ∈ K((𝑥)) [𝑦] monic of degree 𝑑 . Suppose that 𝐹 is non degenerate,
with monic irreducible factors 𝐹 ∗

1
, . . . , 𝐹 ∗𝑠 . Given 𝜎 ⩾ 𝑚𝜆 (𝐹 ), we can compute 𝐹1, . . . , 𝐹𝑠

monic such that
𝑣𝜆 (𝐹 − 𝐹1 · · · 𝐹𝑠 ) − 𝑣𝜆 (𝐹 ) > 𝜎

with ˜O(𝑑𝜎) operations in K plus some univariate factorizations over K whose degree sum
is at most 𝑑 . Moreover, each factor is approximated with a relative precision

𝑣𝜆 (𝐹𝑖 − 𝐹 ∗𝑖 ) − 𝑣𝜆 (𝐹 ∗𝑖 ) > 𝜎 −𝑚𝜆 (𝐹 )

for all 𝑖 = 1, . . . , 𝑠 .

To our knowledge, this result is new. It improves [17] and [18], which focus on

the Gauss valuation 𝑣0 and reach a quasi-optimal complexity only for 𝜎 ⩾ 𝑑𝑚0 (𝐹 ) and

characteristic of K zero or high enough. It turns out that we need to get rid of all these

restrictions for our purpose. The proof of Theorem 1.8 is based on two main points:
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• Fast arithmetic of sparse polynomials, leading to a softly linear 𝑣𝜆-adic Hensel

lifting (Proposition 2.18).

• A divide and conquer strategy based on a suitable choice of the various slopes 𝜆′

which will be used at each recursive call of Hensel lifting.

1.4 Main lines of the proof of Theorem 1.2
Except the choice of the valuation, the strategy for the proof of Theorem 1.2 mainly

follows [13, 24]:

• We choose a suitable 𝜆 ∈ Q and we compute the factorization of 𝐹 in K[[𝑥]] [𝑦]
with 𝑣𝜆-adic precision 𝜎 ∈ O(𝑉 /𝑑𝑦), for a cost

˜O(𝑉 ) by Theorem 1.8.

• Adapt the logarithmic derivative method of [13, 24] to reduce to linear algebra the

problem of recombinations of the truncated analytic factors into factors in K[𝑥,𝑦].
A good choice of 𝜆 is a key point to ensure that the 𝑣𝜆-adic precision O(𝑉 /𝑑𝑦) is

sufficient to solve recombinations.

• We are reduced to solve a linear system of at most 𝑟 unknowns andO(𝑉 ) equations,

which fits in the aimed bound. We build the underlying recombination matrix

using a fast 𝑣𝜆-adic Euclidean division by non monic polynomials (Proposition 3.6).

1.5 The case of degenerated polynomials
Note first that the non degeneracy hypothesis holds generically among all poly-

nomials with prescribed polytope. If however 𝐹 is degenerated, let us mention three

options:

• We may compute nevertheless the 𝑣𝜆-adic factorization of 𝐹 ∈ K[[𝑥]] [𝑦]. We still

expect a softly linear complexity using the recent algorithms [17, 18] combined

with Theorem 1.8. The main drawback is that we might need a higher precision

for solving recombinations, and this approach will be worthwhile only if the

so-called “separability exponent” of 𝐹 is not too big, see [24] for details in the

𝑥-adic case.

• We can also look for an other map 𝜏 such that 𝜏 (𝐹 ) is not degenerated and has a

lower lattice length which is “small enough,” although not minimal.

• If none of these two options is worthwhile, then we can always use the convex-

dense algorithm of [2]. Indeed, considering only the “bounding rectangle” allows

to use a shift 𝑥 ↦→ 𝑥 + 𝑥0 to reach the non degenerated case.

Remark 1.9. Let us mention too [5], where the authors develop a Hensel lifting with

respect to a Newton precision, given by a convex piecewise affine function. It might be

interesting to look if such an approach could be useful for our purpose, as it allows to

take care of the shape of Λ(𝐹 ).
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1.6 Organisation of the paper
Section 2 is dedicated to the proof of Theorem 1.8. In Section 3, we adapt the lifting

and recombination scheme of [13, 11] in the 𝑣𝜆-adic context, leading to the proof of

Theorem 1.2 and Corollary 1.5.

2 Fast 𝒗𝝀-adic factorization
In what follows, we fix 𝜆 =𝑚/𝑞 ∈ Q with 𝑞 ⩾ 1 and 𝑞,𝑚 coprime and we consider

the valuation 𝑣𝜆 as defined in (2).

2.1 The ring A𝝀 and its fast arithmetic
Consider the classical Newton–Puiseux transformation

𝜏𝜆 : K((𝑥)) [𝑦] → K((𝑥)) [𝑦], 𝐹 (𝑥,𝑦) ↦→ 𝐹 (𝑥,𝑦) = 𝐹 (𝑥𝑞, 𝑥𝑚𝑦). (4)

This map is an injective K-algebra endomorphism. Thus, its image

A𝜆 := K((𝑥𝑞)) [𝑥𝑚𝑦] ⊂ K((𝑥)) [𝑦]

is a subring isomorphic to K((𝑥)) [𝑦]. We denote

A+
𝜆
= A𝜆 ∩ K[[𝑥]] [𝑦] and B𝜆 = A𝜆 ∩ K[𝑥,𝑦] .

Both sets are subrings of A𝜆 . Note that the map 𝜏𝜆 preserves the size of the support of a

polynomial.

The valuation 𝑣𝜆 is related to the Gauss valuation 𝑣0 by

𝑣0 (𝜏𝜆 (𝐹 )) = 𝑞𝑣𝜆 (𝐹 ). (5)

Unfortunately, computing the 𝑣0-adic factorization of 𝜏𝜆 (𝐹 ) which induces the 𝑣𝜆-adic

factorization of 𝐹 with the recent softly linear algorithms [16] does not fit in the aimed

bound due to the presence of the extra factor 𝑞 in (5). To remediate this problem, we

need take advantage of the sparsity of 𝜏𝜆 (𝐹 ), which is reflected in more details by the

following lemma.

Lemma 2.1. Let 𝐹 ∈ K((𝑥)) [𝑦]. Then 𝐹 ∈ A𝜆 if and only if

𝐹 =
∑︁
𝑘

𝑓𝑘 (𝑦𝑞)𝑦𝛼𝜆 (𝑘 )𝑥𝑘 , 𝑓𝑘 ∈ K[𝑦]

where 0 ⩽ 𝛼𝜆 (𝑘) < 𝑞 is defined by 𝛼𝜆 (𝑘) ≡ 𝑘𝑚−1
mod 𝑞. Equivalently, we have

A𝜆 =

𝑞−1⊕
𝑘=0

𝑥𝑘𝑦𝛼𝜆 (𝑘 )K((𝑥𝑞)) [𝑦𝑞] .

In particular, A𝜆 ∩ K((𝑥)) = K((𝑥𝑞)) and A𝜆 ∩ K[𝑦] = K[𝑦𝑞] .
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Proof. By (4), we have 𝐹 ∈ A𝜆 if and only if 𝐹 =
∑

𝑖, 𝑗 𝑐𝑖 𝑗𝑥
𝑚𝑖+𝑞𝑗𝑦𝑖 for some 𝑐𝑖 𝑗 ∈ K. For a

fixed 𝑘 , there exists 𝑖, 𝑗 such that𝑚𝑖 +𝑞 𝑗 = 𝑘 if and only 𝑖 ≡ 𝑘𝑚−1 [𝑞]. The proof follows

straightforwardly. □

Corollary 2.2. K((𝑥)) [𝑦] = A𝜆 ⊕ 𝑦A𝜆 ⊕ · · · ⊕ 𝑦𝑞−1A𝜆 = A𝜆 ⊕ 𝑥A𝜆 ⊕ · · · ⊕ 𝑥𝑞−1A𝜆 .

Notice that if 𝑞 > 1, neither 𝑥 nor 𝑦 belongs to A𝜆 . Let us consider the union of all

translated of A𝜆 and B𝜆 by a monomial:

˜A𝜆 =
⋃

𝑖∈Z, 𝑗∈N
𝑥𝑖𝑦 𝑗A𝜆, ˜B𝜆 =

⋃
𝑖∈Z, 𝑗∈N

𝑥𝑖𝑦 𝑗B𝜆 .

These sets are not stable by addition, but they both form a multiplicative monoid.

Corollary 2.3. If 𝐹 ∈ ˜B𝜆 has bidegree (𝑑, 𝑛), its support has size O(𝑑𝑛/𝑞).

In what follows, we simply say precision for Gauss precision.

2.1.1 Fast multiplication in Ã𝝀

A key point for our purpose is that we have access to a faster multiplication in
˜A𝜆

than in K((𝑥)) [𝑦]. Let us start with an easy lemma.

Lemma 2.4. Let 𝐺,𝐻 ∈ K((𝑥)) [𝑦] and let 𝑁 ∈ Z. The product 𝐺𝐻 mod 𝑥𝑁 only
depends on 𝐺 mod 𝑥𝑁−𝑣0 (𝐻 ) and 𝐻 mod 𝑥𝑁−𝑣0 (𝐺 ) .

Proof. Clear. □

Proposition 2.5. Let 𝐺,𝐻 ∈ ˜A𝜆 of degree at most 𝑑 . Given 𝑛 > 0, we can compute
𝐹 =𝐺𝐻 with precision 𝑛 + 𝑣0 (𝐹 ) with ˜O(𝑑𝑛/𝑞) operations in K.

Proof. Thanks to the relation 𝑣0 (𝐹 ) = 𝑣0 (𝐺) + 𝑣0 (𝐻 ), Lemma 2.4 shows that it’s enough

to compute 𝐹0 =𝐺0𝐻0 with 𝐺0, 𝐻0 ∈ ˜B𝜆 defined as

𝐺0 =𝐺 mod 𝑥𝑛+𝑣0 (𝐺 ) , 𝐻0 = 𝐻 mod 𝑥𝑛+𝑣0 (𝐻 ) .

The supports of 𝐺0, 𝐻0 have size O(𝑑𝑛/𝑞). Since
˜B𝜆 is a monoid, the support of 𝐹0 =

𝐺0𝐻0 ∈ ˜B𝜆 has also size O(𝑑𝑛/𝑞). It follows from [21, Proposition 6] or [20, Theorem 12]

that 𝐹0 can be computed in time
˜O(𝑑𝑛/𝑞). □

We thus gain a factor 𝑞 when compared to usual bivariate multiplication. Note

that fast multiplication of polynomials with prescribed support is based on a sparse

multivariate evaluation-interpolation strategy (see [20, 21] and references therein), the

crucial point here being that 𝐹 = 𝐺𝐻 remains sparse thanks to the monoid structure

of
˜A𝜆 .
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2.1.2 Fast division in A𝝀

Since the map 𝜏𝜆 preserves the degree in 𝑦, both rings A𝜆,A+𝜆 are Euclidean rings

when considering division with respect to 𝑦. Namely, given 𝐹,𝐺 ∈ K((𝑥)) [𝑦], the

Euclidean division 𝐹 =𝑄𝐺 + 𝑅, deg(𝑅) < deg(𝐺) forces the Euclidean division of 𝐹,𝐺

defined by (4) to be

𝐹 =𝑄𝐺 + 𝑅, 𝑄, 𝑅 ∈ A𝜆, deg(𝑅) < deg(𝐺).

Moreover, the next lemma ensures that if 𝐹,𝐺 ∈ A+
𝜆

(resp. B𝜆) with 𝐺 monic, then

𝑄, 𝑅 ∈ A+
𝜆

(resp. B𝜆).

Lemma 2.6. Let 𝐹,𝐺 ∈ K((𝑥)) [𝑦] with Euclidean division 𝐹 =𝑄𝐺 + 𝑅. Assume that the
leading coefficient of 𝐺 has valuation 𝑣0 (𝐺). Then

𝑣0 (𝑄) ⩾ 𝑣0 (𝐹 ) − 𝑣0 (𝐺) and 𝑣0 (𝑅) ⩾ 𝑣0 (𝐹 ).

Proof. See e.g. [18] (a similar result holds for an arbitrary valuation). □

Given 𝐹 ∈ K((𝑥)) [𝑦] of degree 𝑑 , let us denote by 𝐹 = 𝑦𝑑𝐹 (𝑥,𝑦−1) its reciprocal

polynomial. We will need the following lemma.

Lemma 2.7. Let 𝐹 ∈ A𝜆 of degree 𝑑 . Then 𝐹 ∈ 𝑦𝑟A−𝜆 where 𝑟 = 𝑑 mod 𝑞.

Proof. Let 𝐹 ∈ A𝜆 with expression as in Lemma 2.1. Then

𝐹 =
∑︁
𝑘

˜𝑓𝑘 (𝑦𝑞)𝑦𝑑−𝑞 deg(𝑓𝑘 )−𝛼𝜆 (𝑘 )𝑥𝑘 , 𝑓𝑘 ∈ K[𝑦] .

We have𝑑−𝑞 deg(𝑓𝑘 )−𝛼𝜆 (𝑘) ≡ 𝑟+𝛼−𝜆 (𝑘) mod 𝑞 and the claim follows from Lemma 2.1

applied in the ring A−𝜆 . □

Proposition 2.8. Let 𝐹,𝐺 ∈ A𝜆 of degree at most𝑑 , and suppose that the leading coefficient
of𝐺 has valuation 𝑣0 (𝐺). Given 𝑛 ⩾ 0, we can compute𝑄, 𝑅 ∈ A𝜆 with deg(𝑄) < deg(𝐺)
such that

𝐹 =𝑄𝐺 + 𝑅 mod 𝑥 𝑣0 (𝐹 )+𝑛

with ˜O(𝑑𝑛/𝑞) operations in K.

Proof. Let 𝑒 = deg(𝐺) and 𝑑 = deg(𝐹 ). Assume 𝑑 > 𝑒 . Let us first reduce to the case

where 𝐺 is monic. We need to take care that multiplication by an arbitrary power of 𝑥

is not allowed in A𝜆 . We proceed as follows. Let 𝑘 = −𝑣0 (𝐺) and let 𝛼 = 𝛼𝜆 (𝑘). By

Lemma 2.1, we have 𝑥𝑘𝑦𝛼 ∈ A𝜆 so the polynomials

𝐺0 = 𝑥
𝑘𝑦𝛼𝐺 and 𝐹0 = 𝑥

𝑘𝑦𝛼𝐹

belong to A𝜆 , with now 𝑣0 (𝐺0) = 0. We are reduced to solve

𝐹0 =𝑄𝐺0 + 𝑅0 mod 𝑥 𝑣0 (𝐹0 )+𝑛
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in A𝜆 , recovering 𝑅 for free from the relation 𝑅0 = 𝑥
𝑘𝑦𝛼𝑅. By assumption the leading

coefficient 𝑢 (𝑥) of 𝐺0 is invertible in K[[𝑥]]. Moreover, deg(𝐺0) = 𝑒 + 𝛼 is divisible

by 𝑞 and it follows from Lemma 2.1 that 𝑢 ∈ K[[𝑥𝑞]] ⊂ A𝜆 . Hence so does 𝑢−1
. Thus 𝑢

can be invert in A+
𝜆

with precision 𝑛 in time
˜O(𝑛/𝑞), and we may suppose safely that

𝐺0 is monic. Note that

deg(𝐹0) − deg(𝐺0) = deg(𝐹 ) − deg(𝐺) = 𝑑 − 𝑒.

The classical fast Euclidean division 𝐹0 =𝑄𝐺0 + 𝑅0 runs as follows:

1. Truncate 𝐹0 at precision 𝑛 + 𝑣0 (𝐹0) and 𝐺0 at precision 𝑛.

2. Compute �̃�0 := �̃�−1

0
mod 𝑦𝑑−𝑒+1

with precision 𝑛.

3. Compute �̃� = 𝐹0�̃�0 mod 𝑦𝑑−𝑒+1
with precision 𝑛 + 𝑣0 (𝐹 ).

4. Compute 𝑄 = 𝑦𝑑−𝑒�̃� (𝑥,𝑦−1).

5. Compute 𝑅0 = 𝐹0 −𝑄𝐺0 with precision 𝑛 + 𝑣0 (𝐹 ).

Note that Step 2 makes sense: since 𝐺0 is monic, we have �̃�0 (0) = 1 so �̃�0 can be

invert in K[[𝑥]] [[𝑦]]. This algorithm returns the correct output 𝐹 =𝑄𝐺 + 𝑅 if we do

not truncate, see e.g. [10, Theorem 9.6] and Lemma 2.6 and Lemma 2.4 ensure that

truncations are correct to get 𝐹0 = 𝑄𝐺0 + 𝑅0 mod 𝑥𝑛+𝑣0 (𝐹 )
. Using quadratic Newton

iteration, the inversion of �̃�0 at Step 2 requires O(log(𝑑)) multiplications and additions

in K[[𝑥]] [𝑦] of degrees at most𝑑−𝑒 with precision𝑛 (see e.g. [10, Theorem 9.4]). Since𝑞

divides deg(𝐺0), Lemma 2.7 gives �̃�0 ∈ A−𝜆 , which is a ring. Hence all additions and

multiplications required by [10, Algorithm 9.3] take place in A−𝜆 and the cost of Step 2

fits in the aimed bound thanks to Proposition 2.5. Since �̃�0, 𝐹0 ∈ ˜A−𝜆 by Lemma 2.7, we

compute �̃� at Step 3 in time
˜O((𝑑 − 𝑒)𝑛/𝑞) by Proposition 2.5. Step 4 is free. At Step 5,

the equation has degree 𝑑 + 𝛼 and vanish mod 𝑦𝛼 , so its sparse size is
˜O(𝑑𝑛/𝑞) and

Step 5 fits too in the aimed bound since 𝐹0, 𝑄,𝐺0 ∈ A𝜆 . □

2.1.3 Fast Hensel lifting in A𝝀

Proposition 2.9. Let 𝐹 ∈ A+
𝜆
of degree 𝑑 and consider a coprime factorization 𝐹 (0, 𝑦) =

𝑓0 · · · 𝑓𝑟 𝑓∞ in A𝜆 ∩ K[𝑦] = K[𝑦𝑞] with 𝑓𝑖 monic and 𝑓∞ = 𝑐 ∈ K× . Then there exists
uniquely determined polynomials 𝐹0, . . . , 𝐹𝑟 , 𝐹∞ ∈ A+𝜆 such that

𝐹 = 𝐹0 · · · 𝐹𝑟𝐹∞, 𝐹𝑖 (0, 𝑦) = 𝑓𝑖 (0, 𝑦) 𝑖 = 0, . . . , 𝑘,∞

with 𝐹𝑖 monic of degree deg(𝑓𝑖 ). We can compute the 𝐹𝑖 ’s with precision 𝑛 within ˜O(𝑑𝑛/𝑞)
operations in K. Moreover, the truncated polynomials 𝐹𝑖 mod 𝑥𝑛 are uniquely determined
by the equality 𝐹 ≡ 𝐹0 · · · 𝐹𝑟𝐹∞ mod 𝑥𝑛 .

Proof. This is the classical fast multi-factor Hensel lifting, see e.g. [10, Algorithm 15.17].

The algorithm is based on multiplications and divisions of polynomials at precision 𝑛.

The initial Bezout relations holds here in K[𝑦𝑞] ⊂ A𝜆 , and it follows that at each Hensel
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step, the input polynomials belong to the ring A𝜆 . Moreover, all Euclidean divisions

satisfy the hypothesis of Proposition 2.8. The claim thus follows from Proposition 2.5

and Proposition 2.8 together with [10, Theorem 15.18]. Unicity of the lifting mod 𝑥𝑛

follows from [10, Theorem 15.14]. □

Remark 2.10. It is crucial to consider the factorization of 𝐹 (0, 𝑦) in the ring A𝜆 . Typically,

a polynomial of shape𝑦𝑞−1 should be considered irreducible. Otherwise, the complexity

will be
˜O(𝑑𝑛) due to the loss of sparse arithmetic.

Remark 2.11. Propositions 2.8 and 2.9 appear also in [15, Propositions 11 and 12] under

the assumption that 𝐹 ∈ B𝜆 is monic. However, the proofs have not been published up

to our knowledge.

2.2 Fast 𝒗𝝀-adic Hensel lemma
By the isomorphism 𝜏𝜆 : K((𝑥)) [𝑦] → A𝜆 , the previous results translate in an

obvious way in quasi-linear complexity estimates for 𝑣𝜆-adic truncated multiplication

and division in K((𝑥)) [𝑦].

Corollary 2.12. Let 𝜆 ∈ Q and let𝐺,𝐻 ∈ K((𝑥)) [𝑦] of degree at most 𝑑 . We can compute
𝐹 =𝐺𝐻 at 𝜆-precision 𝑣𝜆 (𝐹 ) + 𝜎 with ˜O(𝑑𝜎) operations in K.

Proof. Follows from (5) together with Proposition 2.5. □

Corollary 2.13. We can multiply arbitrary polynomials𝐺,𝐻 ∈ K[𝑥,𝑦] in quasi-linear
time with respect to the 𝜆-size of the output.

Remark 2.14. We could have used directly a sparse multivariate evaluation-interpolation

strategy on the input polynomials 𝐺,𝐻 . However, we believe that using fast arithmetic

in the ring A𝜆 is more convenient and offers more applications.

Definition 2.15. We say that 𝐺 ∈ K((𝑥)) [𝑦] is 𝜆-monic if its leading monomial 𝑢𝑦𝑒

satisfies 𝑣𝜆 (𝑢𝑦𝑒 ) = 𝑣𝜆 (𝐺).

Proposition 2.16. Let 𝐹,𝐺 ∈ K((𝑥)) [𝑦] of degrees at most 𝑑 with 𝐺 𝜆-monic. We can
compute 𝑄, 𝑅 ∈ K((𝑥)) [𝑦] such that

𝑣𝜆 (𝐹 − (𝑄𝐺 + 𝑅)) ⩾ 𝑣𝜆 (𝐹 ) + 𝜎

within ˜O(𝑑𝜎) operations.

Proof. We apply Proposition 2.8 to the polynomials 𝐹 = 𝜏𝜆 (𝐹 ) and𝐺 = 𝜏𝜆 (𝐺). We are

reduced to compute 𝑄, 𝑅 such that

𝑣0

(
𝐹 − (𝑄𝐺 + 𝑅)

)
⩾ 𝑣0 (𝐹 ) + 𝑞𝜎. (6)

Since𝐺 is assumed to be 𝜆-monic, the leading coefficient 𝑢 (𝑥) of𝐺 has valuation 𝑣0 (𝐺)
and we conclude thanks to Proposition 2.8. □

We get finally a fast Hensel lifting with respect to the valuation 𝑣𝜆 .
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Definition 2.17. Let 𝐹 =
∑
𝑐𝑖 𝑗𝑥

𝑖𝑦 𝑗 ∈ K((𝑥)) [𝑦] and 𝜎 ∈ 1

𝑞
Z. The 𝜆-homogeneous

component of 𝐹 of degree 𝜎 is

𝐹𝜎 =
∑︁

𝑖+𝑗𝜆=𝜎
𝑐𝑖 𝑗𝑥

𝑖𝑦 𝑗 ∈ K[𝑥±1] [𝑦] .

The 𝜆-initial part of 𝐹 is the 𝜆-homogeneous component of 𝐹 of lowest degree 𝑣𝜆 (𝐹 ), denoted
by in𝜆 (𝐹 ).

Let 𝐹 ∈ K((𝑥)) [𝑦]. The irreducible factorization of the 𝜆-initial part of 𝐹 can be

written in a unique way (up to permutation) as

in𝜆 (𝐹 ) = 𝑝0𝑝1 · · · 𝑝𝑘𝑝∞ ∈ K[𝑥±1] [𝑦] (7)

where 𝑝0 = 𝑦𝑛 with 𝑛 ∈ N, 𝑝∞ = 𝑢𝑥𝑎 with 𝑎 ∈ Z, 𝑢 ∈ K× and where 𝑝1, . . . , 𝑝𝑘 are

coprime powers of irreducible 𝜆-homogeneous monic polynomials, not divisible by 𝑦.

The following result is well known (see e.g. [4, Chapter VI]).

Proposition 2.18. There exists unique polynomials 𝑃∗𝑖 ∈ K((𝑥)) [𝑦] such that

𝐹 = 𝑃∗
0
· · · 𝑃∗

𝑘
𝑃∗∞ ∈ K((𝑥)) [𝑦], in𝜆 (𝑃∗𝑖 ) = 𝑝𝑖 ,

with 𝑃∗𝑖 𝜆-monic of deg(𝑃∗𝑖 ) = deg(𝑝𝑖 ) for 𝑖 = 0, . . . , 𝑘 . Moreover, 𝑃∗𝑖 is irreducible if 𝑝𝑖 is
irreducible.

We get the following complexity result.

Proposition 2.19. Given 𝜎 ∈ Q+, and given the irreducible factorization (7) we can
compute 𝑃0, . . . , 𝑃∞ ∈ K[𝑥±1] [𝑦] such that

𝑣𝜆 (𝑃∗𝑖 − 𝑃𝑖 ) > 𝑣𝜆 (𝑃∗𝑖 ) + 𝜎 ∀𝑖 = 0, . . . , 𝑘,∞

in time ˜O(𝑑𝜎). We have then

𝑣𝜆 (𝐹 − 𝑃0 · · · 𝑃∞) > 𝑣𝜆 (𝐹 ) + 𝜎.

Proof. Even if it means multiplying 𝐹 by a suitable monomial 𝑥𝑖𝑦𝛼 with 0 ⩽ 𝛼 < 𝑞, we

may assume that 𝑣𝜆 (𝐹 ) = 0. Then we apply Proposition 2.9 to the polynomial 𝐹 = 𝜏𝜆 (𝐹 ),
starting from the factorization of 𝐹 (0, 𝑦) induced by the factorization of in𝜆 (𝐹 ), and

with a suitable Gauss precision in order to recover the desired 𝜆-precision. The cost and

the unicity of the truncated polynomial 𝑃𝑖 follow from Proposition 2.9. □

Remark 2.20. This result improves [18, Corollary 2] which gives the complexity estimate

˜O(𝑑 (𝜎 +𝑣𝜆 (𝐹 )). Proposition 2.19 has a significant impact when a lifting precision closed

to 𝑣𝜆 (𝐹 ) is needed. This is precisely the case for our application to bivariate factorization.

Definition 2.21. We denote PartialFacto(𝐹, 𝜆, 𝜎) the algorithm which computes the
factorization (7) of in𝜆 (𝐹 ) and returns the truncated factors 𝑃0, . . . , 𝑃∞ following Proposi-
tion 2.19.
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𝑚𝜆 (𝑃)

𝑣𝜆 (𝑃)

Slope −𝜆

Λ(𝑃)

Figure 4: Example of 𝜆-defect of straightness where𝑚𝜆 (𝑃) = 𝑏𝜆 (𝑃) > 𝑎𝜆 (𝑃).

2.3 Fast 𝒗𝝀-adic factorization
We want now to compute the complete irreducible factorization of 𝐹 in K((𝑥)) [𝑦].

Although our target precision is measured in terms of the valuation 𝑣𝜆 , we will perform

recursive calls of PartialFacto with various valuations 𝑣𝜆′ . The integer𝑚𝜆 (𝐹 ) introduced

in (3) will play a key role.

2.3.1 The 𝝀-defect of straightness

Definition 2.22. Given 𝑃 =
∑𝑛

𝑖=𝑠 𝑝𝑖𝑦
𝑖 ∈ K((𝑥)) [𝑦] with 𝑝𝑠 , 𝑝𝑛 ≠ 0, we denote in𝑦 (𝑃) =

𝑝𝑠𝑦
𝑠 the initial term of 𝑃 and lt𝑦 (𝑃) = 𝑝𝑛𝑦𝑛 the leading term of 𝑃 . We define

𝑎𝜆 (𝑃) = 𝑣𝜆 (in𝑦 (𝑃)) − 𝑣𝜆 (𝑃) and 𝑏𝜆 (𝑃) = 𝑣𝜆 (lt𝑦 (𝑃)) − 𝑣𝜆 (𝑃).

The 𝜆-defect of straightness of 𝑃 is𝑚𝜆 (𝑃) = max(𝑎𝜆 (𝑃), 𝑏𝜆 (𝑃)).

See Figure 4 for an example in the case that𝑚𝜆 (𝑃) = 𝑏𝜆 (𝑃) > 𝑎𝜆 (𝑃).
Recall from the introduction that Λ(𝑃) is the lower convex hull of the set of points

(𝑖, 𝑣0 (𝑝𝑖 )), 𝑖 = 𝑠, . . . , 𝑛, where 𝑣0 (𝑝𝑖 ) is the 𝑥-adic valuation. By convexity, 𝑣0 (𝑝𝑖 ) + 𝑖𝜆
takes its maximal value at 𝑖 = 𝑠 or 𝑖 = 𝑛, hence the definition of𝑚𝜆 (𝑃) coincides with

(3). The terminology for𝑚𝜆 is justified by the following fact.

Lemma 2.23. The following properties hold:

1. 𝑎𝜆 (𝑃) ⩾ 0.

2. 𝑏𝜆 (𝑃) ⩾ 0 with equality if and only if 𝑃 is 𝜆-monic.

3. 𝑚𝜆 (𝑃) ⩾ 0 with equality if and only if Λ(𝑃) is one-sided of slope −𝜆.

Proof. This follows from the equality 𝑣𝜆 (𝑃) = min{𝑣𝜆 (𝑝𝑖𝑦𝑖 ) | 𝑖 = 𝑠, . . . , 𝑛}. □
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Corollary 2.24. Let 𝑃,𝑄 ∈ K((𝑥)) [𝑦]. We have Λ(𝑃𝑄) = Λ(𝑃) + Λ(𝑄) and

𝑚𝜆 (𝑃𝑄) ⩾ max(𝑚𝜆 (𝑃),𝑚𝜆 (𝑄))

with equality if Λ(𝑄) or Λ(𝑃) is one-sided of slope −𝜆.

Proof. First equality is a well known variant of Ostrowski’s theorem. Since in𝑦 and lt𝑦

are multiplicative operators and 𝑣𝜆 is a valuation, we get

𝑎𝜆 (𝑃𝑄) = 𝑎𝜆 (𝑃) + 𝑎𝜆 (𝑄) and 𝑏𝜆 (𝑃𝑄) = 𝑏𝜆 (𝑃) + 𝑏𝜆 (𝑄).

The inequality for𝑚𝜆 follows straightforwardly. If Λ(𝑄) or Λ(𝑃) is one-sided of slope−𝜆,

the equality follows from point (3) of Lemma 2.23. □

2.3.2 Comparisons between various valuations

Lemma 2.25. Let 𝜆′ ⩾ 𝜆 and let 𝑃 ∈ K((𝑥)) [𝑦] of degree 𝑛. Then

𝑣𝜆 (𝑃) ⩽ 𝑣𝜆′ (𝑃) ⩽ 𝑣𝜆 (𝑃) + 𝑛(𝜆′ − 𝜆)

Proof. Since 𝑖 + 𝑗𝜆 ⩽ 𝑖 + 𝑗𝜆′ we get immediately 𝑣𝜆 ⩽ 𝑣𝜆′ . Let (𝑖0, 𝑗0) in the support of 𝑃

such that 𝑣𝜆 (𝑃) = 𝑖0 + 𝑗0𝜆. We get

𝑣𝜆′ (𝑃) ⩽ 𝑖0 + 𝑗0𝜆′ = 𝑖0 + 𝑗0𝜆 + 𝑗0 (𝜆′ − 𝜆) = 𝑣𝜆 (𝑃) + 𝑗0 (𝜆′ − 𝜆)

and we conclude thanks to 𝑗0 ⩽ 𝑛. □

Definition 2.26. Let 𝑃0, 𝑃 ∈ K((𝑥)) [𝑦]. We say that 𝑃0 approximates 𝑃 with relative
𝜆-precision 𝜎 if 𝑣𝜆 (𝑃 −𝑃0) > 𝑣𝜆 (𝑃) +𝜎 . We say that 𝑃 is known with relative 𝜆-precision 𝜎
if we know such an approximant 𝑃0.

Corollary 2.27. Let 𝑃 ∈ K((𝑥)) [𝑦] of degree 𝑛, let 𝜆, 𝜆′ ∈ Q and let 𝜎 ⩾ 0. If 𝑃 is known
with relative 𝜆′-precision

𝜎 ′ = 𝜎 ′ (𝜆, 𝜆′, 𝜎, 𝑃) :=

{
𝜎 + 𝑣𝜆 (𝑃) − 𝑣𝜆′ (𝑃) + 𝑛(𝜆′ − 𝜆) if 𝜆′ ⩾ 𝜆

𝜎 + 𝑣𝜆 (𝑃) − 𝑣𝜆′ (𝑃) if 𝜆′ ⩽ 𝜆
(8)

then 𝑃 is known with relative 𝜆-precision 𝜎 .

Proof. This follows from the second inequality in Lemma 2.25 for the case 𝜆′ ⩾ 𝜆 and

from the first inequality in Lemma 2.25 for the case 𝜆′ ⩽ 𝜆. □

Lemma 2.28. We keep notations of Corollary 2.27.

• If 𝜆′ ⩾ 𝜆, then𝑚𝜆 (𝑃) + 𝑣𝜆 (𝑃) − 𝑛𝜆 ⩾ 𝑚𝜆′ (𝑃) + 𝑣𝜆′ (𝑃) − 𝑛𝜆′ .

• If 𝜆′ ⩽ 𝜆, then𝑚𝜆 (𝑃) + 𝑣𝜆 (𝑃) ⩾ 𝑚𝜆′ (𝑃) + 𝑣𝜆′ (𝑃).
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Proof. Denoting 𝑃 =
∑𝑛

𝑖=𝑠 𝑝𝑖𝑦
𝑖
, the first inequality is equivalent to

max

(
𝑣0 (𝑝𝑠 ) − (𝑛 − 𝑠)𝜆, 𝑣0 (𝑝𝑛)

)
⩾ max

(
𝑣0 (𝑝𝑠 ) − (𝑛 − 𝑠)𝜆′, 𝑣0 (𝑝𝑛)

)
,

which follows from the assumption 𝜆 ⩽ 𝜆′. The second inequality is equivalent to

max

(
𝑣0 (𝑝𝑠 ) + 𝑠𝜆, 𝑣0 (𝑝𝑛) + 𝑛𝜆

)
⩾ max

(
𝑣0 (𝑝𝑠 ) + 𝑠𝜆′, 𝑣0 (𝑝𝑛) + 𝑛𝜆′

)
,

which follows from the assumption 𝜆 ⩾ 𝜆′. □

Corollary 2.29. We have 𝜎 ′ − 𝜎 ⩾ 𝑚𝜆′ (𝑃) −𝑚𝜆 (𝑃).

Proof. Combining (8) and Lemma 2.28 leads to the desired inequality. □

We will need also an upper bound for 𝜎 ′ in terms of 𝜎 .

Lemma 2.30. We keep notations of Corollary 2.27. Suppose that 𝑏𝜆 (𝑃) = 0 if 𝜆′ ⩾ 𝜆 and
that 𝑎𝜆 (𝑃) = 0 and 𝑃 not divisible by 𝑦 if 𝜆′ ⩽ 𝜆. Then 𝜎 ′ ⩽ 𝜎 +𝑚𝜆′ (𝑃).

Proof. Suppose 𝜆′ ⩾ 𝜆. By (8), the inequality is equivalent to

𝑚𝜆′ (𝑃) ⩾ 𝑣𝜆 (𝑃) − 𝑣𝜆′ (𝑃) + 𝑛(𝜆′ − 𝜆).

Both sides are invariant when dividing 𝑃 by some element of K((𝑥)), hence we can

safely suppose 𝑃 monic in 𝑦. The hypothesis 𝑏𝜆 (𝑃) = 0 is still true and we get 𝑣𝜆 (𝑃) =
𝑣𝜆 (𝑦𝑛) = 𝑛𝜆. We are reduced to show that 𝑚𝜆′ (𝑃) ⩾ 𝑛𝜆′ − 𝑣𝜆′ (𝑃) = 𝑏𝜆′ (𝑃), which

follows from Definition 2.22. Suppose now 𝜆′ ⩽ 𝜆. By (8), we need to show that

𝑚𝜆′ (𝑃) ⩾ 𝑣𝜆 (𝑃) − 𝑣𝜆′ (𝑃). By hypothesis, we have 𝑣𝜆 (𝑃) = 𝑣𝜆 (𝑝0) = 𝑣𝜆′ (𝑝0). We

are reduced to show that 𝑚𝜆′ (𝑃) ⩾ 𝑣𝜆′ (𝑝0) − 𝑣𝜆′ (𝑃) = 𝑎𝜆′ (𝑃), which follows from

Definition 2.22. □

2.3.3 Recursive calls

Let 𝐹 ∈ K((𝑥)) [𝑦]. We fix 𝜆 ∈ Q and a relative 𝜆-precision 𝜎 ⩾ 0. Following

Definition 2.21, let us consider

𝐿 = [𝑃0, 𝑃1, . . . , 𝑃𝑘 , 𝑃∞] = PartialFacto(𝐹, 𝜆, 𝜎).

Assuming 𝐹 non degenerated, we know thanks to Proposition 2.18 that 𝑃0, . . . , 𝑃∞
approximate some coprime factors 𝑃∗

0
, 𝑃∗

1
, . . . , 𝑃∗

𝑘
, 𝑃∗∞ of 𝐹 with relative 𝜆-precision 𝜎 .

Moreover, the polynomials 𝑃∗
1
, . . . , 𝑃∗

𝑘
and their approximant are irreducible. There

remains to factorize (if required) the polynomials 𝑃∗
0

and 𝑃∗∞. We denote for short

(𝐺∗, 𝐻 ∗) = (𝑃∗
0
, 𝑃∗∞) and (𝐺,𝐻 ) = (𝑃0, 𝑃∞).

Lemma 2.31. The polynomials𝐺 and𝐺∗ are monic of same degree and 𝐻 and 𝐻 ∗ are not
divisible by 𝑦. Moreover:

• If 𝑃 divides 𝐺 , then𝑚𝜆 (𝑃) = 𝑎𝜆 (𝑃) and 𝑏𝜆 (𝑃) = 0.
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• If 𝑃 divides 𝐻 , then𝑚𝜆 (𝑃) = 𝑏𝜆 (𝑃) and 𝑎𝜆 (𝑃) = 0.

Proof. The first claim follows from Proposition 2.19, Proposition 2.18 and (7). More

precisely, denoting 𝐺 = 𝑐0 + · · · + 𝑐𝑛𝑦𝑛 and 𝐻 = ℎ0 + · · · + ℎ𝑚𝑦𝑚 with 𝑐𝑛, ℎ𝑚 ≠ 0, we

have

in𝜆 (𝐺) = in𝜆 (𝐺∗) = in𝜆 (𝑦𝑛) and in𝜆 (𝐻 ) = in𝜆 (𝐻 ∗) = in𝜆 (ℎ0).
As 𝑣𝜆 (𝐺 − in𝜆 (𝐺)) > 𝑣𝜆 (𝐺) we deduce 𝑏𝜆 (𝐺) = 0 and 𝑚𝜆 (𝐺) = 𝑎𝜆 (𝐺). In the same

way, we get 𝑎𝜆 (𝐻 ) = 0 and𝑚𝜆 (𝐻 ) = 𝑏𝜆 (𝐻 ). If 𝑃 divides 𝐺 , we have 𝑏𝜆 (𝑃) ⩽ 𝑏𝜆 (𝐺) by

multiplicativity of 𝑏𝜆 . As 𝑏𝜆 (𝑃) ⩾ 0, this forces 𝑏𝜆 (𝑃) = 0, and thus𝑚𝜆 (𝑃) = 𝑎𝜆 (𝑃). If 𝑃

divides 𝐻 , then 0 ⩽ 𝑎𝜆 (𝑃) ⩽ 𝑎𝜆 (𝐻 ) forces now 𝑎𝜆 (𝑃) = 0 and𝑚𝜆 (𝑃) = 𝑏𝜆 (𝑃). □

We need a lower bound on 𝜎 which ensures that we can detect the irreducible factors

of 𝐺∗ and 𝐻 ∗ on their approximants 𝐺 and 𝐻 .

Lemma 2.32. Suppose that 𝜎 ⩾ 𝑚𝜆 (𝐹 ). Then Λ(𝐺) = Λ(𝐺∗) and the restriction of 𝐺
and 𝐺∗ to their lower convex hull coincide. The same assertion is true for 𝐻 and 𝐻 ∗. In
particular,𝑚𝜆 (𝐺) =𝑚𝜆 (𝐺∗) and𝑚𝜆 (𝐻 ) =𝑚𝜆 (𝐻 ∗).

Proof. By Lemma 2.31, we have𝐺∗ = 𝑐∗𝑠𝑦
𝑠 + · · · +𝑦𝑛 with 𝑐∗𝑠 ≠ 0 and𝐺 = 𝑐𝑠𝑦

𝑠 + · · · +𝑦𝑛
(we might have a priori 𝑐𝑠 = 0). By a convexity argument, we are reduced to show that

𝑐𝑠 , 𝑐
∗
𝑠 ∈ K((𝑥)) have same 𝑥-adic initial term. We have

𝑣𝜆 (𝑐∗𝑠𝑦𝑠 − 𝑐𝑠𝑦𝑠 ) ⩾ 𝑣𝜆 (𝐺 −𝐺∗) > 𝑣𝜆 (𝐺∗) + 𝜎 ⩾ 𝑣𝜆 (𝐺∗) +𝑚𝜆 (𝐺∗) = 𝑣𝜆 (𝑐∗𝑠𝑦𝑠 ),

the first inequality by definition of 𝑣𝜆 , the second inequality by Proposition 2.18, the last

inequality by hypothesis 𝜎 ⩾ 𝑚𝜆 (𝐹 ) combined with Corollary 2.24, and the last equality

by Lemma 2.23 since 𝐺∗ is 𝜆-monic (Proposition 2.18). We deduce that in𝜆 (𝑐∗𝑠𝑦𝑠 ) =
in𝜆 (𝑐𝑠𝑦𝑠 ), from which it follows that 𝑐𝑠 , 𝑐

∗
𝑠 ∈ K((𝑥)) have same initial term as required.

The assertion for 𝐻 is proved in the same way, focusing now on the leading term

of 𝐻 . □

Assuming 𝐹 non degenerated, its irreducible factorization in K((𝑥)) [𝑦] is deduced

from the irreducible factorization of its lower edges polynomials. Hence, Lemma 2.32

ensures that knowing𝐺 and𝐻 at precision𝜎 ⩾ 𝑚𝜆 (𝐹 ) is sufficient to detect all remaining

irreducible factors of 𝐹 .

2.3.4 Divide and conquer

We apply now recursively PartialFacto to𝐺 and𝐻 with respect to some well chosen

slopes 𝜆𝐺 and 𝜆𝐻 .

Definition 2.33. Let 𝑛 > 𝑠 . The average slope of 𝑃 =
∑𝑛

𝑖=𝑠 𝑝𝑖𝑦
𝑖 ∈ K((𝑥)) [𝑦] is

𝜆𝑃 := −𝑣0 (𝑝𝑛) − 𝑣0 (𝑝𝑠 )
𝑛 − 𝑠 ∈ Q.

In other words, −𝜆𝑃 is the slope of the segment joining the two extremities of the lower
boundary Λ(𝑃).
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This slope is chosen so that the 𝜆𝑃 -valuation of the leading term and the initial term

of 𝑃 coincide. Equivalently, it satisfies

𝑚𝜆𝑃 (𝑃) = 𝑎𝜆𝑃 (𝑃) = 𝑏𝜆𝑃 (𝑃). (9)

We deduce:

Proposition 2.34. Let 𝜆 and 𝐺,𝐻 as above, and suppose 𝐺,𝐻 of positive 𝑦-degree.

• If 𝑃 divides 𝐺 then 𝜆𝑃 ⩾ 𝜆.

• If 𝑃 divides 𝐻 then 𝜆𝑃 ⩽ 𝜆.

In both cases, we have𝑚𝜆𝑃 (𝑃) ⩽ 𝑚𝜆 (𝑃).

Proof. Let 𝑃 = 𝑎𝑠𝑦
𝑠 + · · · + 𝑎𝑛𝑦𝑛 with 𝑎𝑠 , 𝑎𝑛 ≠ 0 and 𝑛 > 𝑠 . If 𝑃 divides 𝐺 , Lemma 2.31

implies 𝑣𝜆 (𝑎𝑠𝑦𝑠 ) ⩾ 𝑣𝜆 (𝑎𝑛𝑦𝑛), which implies 𝜆𝑃 ⩾ 𝜆 by Definition 2.33. On the other

hand, (9) implies that

𝑚𝜆𝑃 (𝑃) = 𝑎𝜆𝑃 (𝑃) = 𝑣𝜆𝑃 (𝑎𝑠𝑦𝑠 ) − 𝑣𝜆𝑃 (𝑃).

Let 𝑖 ⩾ 𝑠 such that 𝑣𝜆𝑃 (𝑃) = 𝑣𝜆𝑃 (𝑎𝑖𝑦𝑖 ). We get

𝑣𝜆𝑃 (𝑎𝑠𝑦𝑠 ) − 𝑣𝜆𝑃 (𝑎𝑖𝑦𝑖 ) ⩽ 𝑣𝜆 (𝑎𝑠𝑦𝑠 ) − 𝑣𝜆 (𝑎𝑖𝑦𝑖 ) ⩽ 𝑣𝜆 (𝑎𝑠𝑦𝑠 ) − 𝑣𝜆 (𝑃) =𝑚𝜆 (𝑃),

the first inequality since (𝑠 − 𝑖)𝜆𝑃 ⩽ (𝑠 − 𝑖)𝜆, the second inequality by Definition of

𝑣𝜆 (𝑃), and the last equality by Lemma 2.31. It follows that𝑚𝜆𝑃 (𝑃) ⩽ 𝑚𝜆 (𝑃), as required.

If 𝑃 divides 𝐻 , Lemma 2.31 forces 𝑠 = 0 and 𝑣𝜆 (𝑃) = 𝑣𝜆 (𝑎0) ⩽ 𝑣𝜆 (𝑎𝑛𝑦𝑛), hence 𝜆𝑃 ⩽ 𝜆.

By (9), we get

𝑚𝜆𝑃 (𝑃) = 𝑏𝜆𝑃 (𝑃) = 𝑣𝜆𝑃 (𝑎𝑛𝑦𝑛) − 𝑣𝜆𝑃 (𝑃).
On the one hand, we have 𝑣𝜆𝑃 (𝑃) ⩾ 𝑣0 (𝑎0) = 𝑣𝜆 (𝑃). On the other hand 𝜆𝑃 ⩽ 𝜆 implies

𝑣𝜆𝑃 (𝑎𝑛𝑦𝑛) ⩽ 𝑣𝜆 (𝑎𝑛𝑦𝑛). We get

𝑚𝜆𝑃 (𝑃) ⩽ 𝑣𝜆 (𝑎𝑛𝑦𝑛) − 𝑣𝜆 (𝑃) = 𝑏𝜆 (𝑃) =𝑚𝜆 (𝑃),

the two equalities by Lemma 2.31. □

Definition 2.35. Let 𝜆 be fixed and let 𝑃 ∈ K((𝑥)) [𝑦]. Given a 𝜆-precision 𝜎 , we denote
𝜎𝑃 = 𝜎 ′ (𝜆, 𝜆𝑃 , 𝜎, 𝑃) the precision induced by (8) with 𝜆′ = 𝜆𝑃 .

We deduce the following key uniform upper bound for 𝜎𝑃 .

Proposition 2.36. Suppose that 𝜎 ⩾ 𝑚𝜆 (𝐹 ). If 𝑃 divides 𝐺 or 𝐻 , then

𝑚𝜆𝑃 (𝑃) ⩽ 𝜎𝑃 ⩽ 𝜎 +𝑚𝜆 (𝐹 ).

Proof. The inequality𝑚𝜆𝑃 (𝑃) ⩽ 𝜎𝑃 follows from Corollary 2.29. By Lemma 2.30, we get

𝜎𝑃 ⩽ 𝜎 +𝑚𝜆𝑃 (𝑃). By Proposition 2.34, we get𝑚𝜆𝑃 (𝑃) ⩽ 𝑚𝜆 (𝑃). Since 𝑃 divides 𝐺 , we

have 𝑚𝜆 (𝑃) ⩽ 𝑚𝜆 (𝐺) by Corollary 2.24. By Lemma 2.32, we have 𝑚𝜆 (𝐺) = 𝑚𝜆 (𝐺∗),
and Corollary 2.24 again gives𝑚𝜆 (𝐺∗) ⩽ 𝑚𝜆 (𝐹 ). The claim follows. □
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Λ(𝐺)

Λ(𝐻 )Λ(𝐹 )

𝑑 = deg(𝐹 )

𝐴

𝐵

𝐶

𝐷

𝐸

𝑏𝜆 (𝐹 ) =𝑚𝜆 (𝐹 )

𝑎𝜆 (𝐹 )

Figure 5: Illustrated proof of Proposition 2.37.

The last key result ensures that using the slopes 𝜆𝐺 and 𝜆𝐻 lead to a divide and

conquer strategy. Given 𝑃 ∈ K((𝑥)) [𝑦], we denote in what follows by 𝑉𝑃 the Euclidean

volume of the convex hull of Λ(𝑃).
Proposition 2.37. Let 𝐹 ∈ K((𝑥)) [𝑦] and suppose that 𝜆 = 𝜆𝐹 (as will be the case at the
recursive calls). Let 𝐺,𝐻 ∈ K((𝑥)) [𝑦] as defined above.

1. 𝑑𝑚𝜆𝐹 (𝐹 )/2 ⩽ 𝑉𝐹 ⩽ 𝑑𝑚𝜆𝐹 (𝐹 ).

2. 𝑉𝐹 = 0 if and only if Λ(𝐹 ) is one-sided, in which case its slope is 𝜆𝐹 .

3. We have (𝑉𝐺 +𝑉𝐻 ) ⩽ 𝑉𝐹 /2.
Proof. We still denote Λ(𝐹 ) the convex hull of the lower boundary Λ(𝐹 ). Let 𝐴𝐵𝐶𝐷 be

the smallest parallelogram with two vertical sides containing Λ(𝐹 ) such that 𝐶 and 𝐷

are respectively the right end point and the left end point of Λ(𝐹 ) and (𝐴𝐷) and (𝐵𝐶)
are vertical. See Figure 5.

Denote 𝜆 = 𝜆𝐹 for short. The line (𝐴𝐵) has equation 𝑖+ 𝑗𝜆 = 𝑣𝜆 (𝐹 ), and the segments

[𝐴𝐷] and [𝐵𝐶] have both length 𝑎𝜆 (𝐹 ) = 𝑏𝜆 (𝐹 ) = 𝑚𝜆 (𝐹 ) (Definition 2.22) by choice

of the average slope. Hence 𝐴𝐵𝐶𝐷 has volume 𝑑𝑚𝜆 (𝐹 ), which gives 𝑉𝐹 ⩽ 𝑑𝑚𝜆 (𝐹 ).
By construction, there exists 𝐸 ∈ [𝐴𝐵] ∩ Λ(𝐹 ) and by convexity, the triangle 𝐶𝐷𝐸 is

contained in Λ(𝐹 ). Since Vol(𝐶𝐷𝐸) = 1

2
Vol(𝐴𝐵𝐶𝐷), the inequality 𝑑𝑚𝜆𝐹 (𝐹 )/2 ⩽ 𝑉𝐹

follows, proving first point. The second item is immediate. Since Λ(𝐺) is the Minkowski

summand of Λ(𝐹 ) whose all minus slopes are strictly greater than 𝜆 (Proposition 2.34),

we may suppose that (up to translation) Λ(𝐺) ⊂ Λ(𝐹 ) with left end point 𝐷 and right

end point 𝐼 ∈ [𝐴𝐸]. By convexity, Λ(𝐺) ⊂ 𝐴𝐸𝐷 and 𝑉𝐺 ⩽ Vol(𝐴𝐸𝐷). In the same way,

we find 𝑉𝐻 ⩽ Vol(𝐵𝐶𝐸). On the other hand, we have 𝑉𝐹 ⩾ 𝑉𝐺 +𝑉𝐻 + Vol(𝐶𝐷𝐸). We

conclude thanks to the relation Vol(𝐶𝐷𝐸) = Vol(𝐴𝐸𝐷) + Vol(𝐵𝐶𝐸). □
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Remark 2.38. The partial factorization of 𝐹 with respect to 𝜆𝐹 is 𝐹 = 𝐺∗𝑄∗𝐻 ∗ where

𝑄∗ = 𝑃∗
1
· · · 𝑃∗

𝑘
has a one-sided lower boundary slope 𝜆𝐹 (which is [𝐴𝐵] ∩ Λ(𝐹 ) on

Figure 5). However, although we use the terminology “slope,” the rational 𝜆𝐹 is generally

not a slope of Λ(𝐹 ). In such a case, the intersection [𝐴𝐵] ∩ Λ(𝐹 ) is reduced to a point

and the partial 𝜆𝐹 -factorization of 𝐹 is simply 𝐹 =𝐺∗𝐻 ∗. An important point is that 𝐺∗

and 𝐻 ∗ are not trivial factors as soon as Λ(𝐹 ) has several slopes.

2.3.5 Proving Theorem 1.8

In the following algorithm, 𝜎𝐺 , 𝜎𝐻 are defined by Definition 2.35, in terms of the

input (𝜆, 𝜎) and the current slopes 𝜆𝐺 , 𝜆𝐻 .

Algorithm 1: Facto(𝐹, 𝜆, 𝜎)
Input: 𝐹 ∈ K((𝑥)) [𝑦] monic non degenerated, 𝜆 ∈ Q and 𝜎 ⩾ 𝑚𝜆 (𝐹 )
Output: The irreducible factors 𝐹 with relative 𝜆-precision 𝜎 −𝑚𝜆 (𝐹 )

1 if deg(𝐹 ) ⩽ 1 then return [𝐹 ];
2 [𝑃0, 𝑃1, . . . , 𝑃𝑘 , 𝑃∞] ← PartialFacto(𝐹, 𝜆, 𝜎);
3 𝐺 ← 𝑃0, 𝐻 ← 𝑃∞;

4 if deg(𝐺) = 0 then 𝐿𝐺 ← [ ] else 𝐿𝐺 ← Facto(𝐺, 𝜆𝐺 , 𝜎𝐺 );
5 if deg(𝐻 ) = 0 then 𝐿𝐻 ← [ ] else 𝐿𝐻 ← Facto(𝐻, 𝜆𝐻 , 𝜎𝐻 );
6 return [𝑃1, . . . , 𝑃𝑘 ] ∪ 𝐿𝐺 ∪ 𝐿𝐻

Theorem 2.39. Given 𝐹 ∈ K((𝑥)) [𝑦] non degenerate with irreducible factors 𝐹 ∗
1
, . . . , 𝐹 ∗𝑠

and given 𝜎 ⩾ 𝑚𝜆 (𝐹 ), running Facto(𝐹, 𝜆, 𝜎) returns a list of irreducible monic coprime
polynomials 𝐹1, . . . , 𝐹𝑠 ∈ K((𝑥)) [𝑦] such that

𝑣𝜆 (𝐹 − 𝐹1 · · · 𝐹𝑠 ) − 𝑣𝜆 (𝐹 ) > 𝜎

within ˜O(𝑑𝜎) operations in K. Moreover,

𝑣𝜆 (𝐹𝑖 − 𝐹 ∗𝑖 ) − 𝑣𝜆 (𝐹 ∗𝑖 ) > 𝜎 −𝑚𝜆 (𝐹 )

for all 𝑖 = 1, . . . , 𝑠 .

We will need the following lemma.

Lemma 2.40. If 𝑣𝜆 (𝐴∗−𝐴) > 𝑣𝜆 (𝐴)+𝜎 and 𝑣𝜆 (𝐵−𝐵∗) > 𝑣𝜆 (𝐵)+𝜎 , then 𝑣𝜆 (𝐴∗𝐵∗−𝐴𝐵) >
𝑣𝜆 (𝐴𝐵) + 𝜎 .

Proof. Follows from𝐴∗𝐵∗ −𝐴𝐵 = 𝐴∗ (𝐵∗ −𝐵) +𝐵(𝐴∗ −𝐴) together with 𝑣𝜆 (𝐴) = 𝑣𝜆 (𝐴∗)
and 𝑣𝜆 (𝐵) = 𝑣𝜆 (𝐵∗). □
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Proof of Theorem 2.39.
Correctness. By induction on the number of recursive calls. If the algorithm stops

at Step 2, then the result follows from Proposition 2.19. Else, we know that 𝐺 and 𝐻

are not degenerated (Lemma 2.32) and approximate𝐺∗ and 𝐻 ∗ with relative 𝜆-precision

𝜎 (Proposition 2.19). As 𝜎𝐺 ⩾ 𝑚𝜆𝐺 (𝐺) (Proposition 2.36), we deduce by induction

that Facto(𝐺, 𝜆𝐺 , 𝜎𝐺 ) returns some approximants 𝐺1, . . . ,𝐺𝑡 of the irreducible factors

𝐺∗
1
, . . . ,𝐺∗𝑡 of 𝐺 such that

𝑣𝜆𝐺 (𝐺 −𝐺1 · · ·𝐺𝑡 ) − 𝑣𝜆𝐺 (𝐺) > 𝜎𝐺 , (10)

with moreover

𝑣𝜆𝐺 (𝐺𝑖 −𝐺∗𝑖 ) − 𝑣𝜆𝐺 (𝐺∗𝑖 ) > 𝜎𝐺 −𝑚𝜆𝐺 (𝐺) ∀𝑖 = 1, . . . , 𝑡 . (11)

Corollary 2.27 and (10) forces

𝑣𝜆 (𝐺 −𝐺1 · · ·𝐺𝑡 ) − 𝑣𝜆 (𝐺) > 𝜎.

Since 𝑣𝜆 (𝐺) = 𝑣𝜆 (𝐺∗) and 𝑣𝜆 (𝐺 −𝐺∗) − 𝑣𝜆 (𝐺∗) > 𝜎 , we deduce

𝑣𝜆 (𝐺∗ −𝐺1 · · ·𝐺𝑟 ) − 𝑣𝜆 (𝐺∗) > 𝜎.

In the same way, the induction hypothesis ensures that Facto(𝐻, 𝜆𝐻 , 𝜎𝐻 ) computes an

approximate irreducible factorization of 𝐻 ∗ such that

𝑣𝜆 (𝐻 ∗ − 𝐻1 · · ·𝐻𝑢) − 𝑣𝜆 (𝐻 ∗) > 𝜎.

We have 𝐹 =𝐺∗𝑃∗
1
· · · 𝑃∗

𝑘
𝐻 ∗ and we have too 𝑣𝜆 (𝑃∗𝑖 −𝑃𝑖 ) − 𝑣𝜆 (𝑃∗𝑖 ) > 𝜎 (Proposition 2.19).

The polynomials (𝐹1, . . . , 𝐹𝑠 ) = (𝑃1, . . . , 𝑃𝑘 ,𝐺1, . . . ,𝐺𝑡 , 𝐻1, . . . , 𝐻𝑢) approximate the irre-

ducible factors of 𝐹 and Lemma 2.40 implies

𝑣𝜆 (𝐹 − 𝐹1 · · · 𝐹𝑟 ) − 𝑣𝜆 (𝐹 ) > 𝜎

as required. There remains to show that 𝑣𝜆 (𝐹𝑖 − 𝐹 ∗𝑖 ) − 𝑣𝜆 (𝐹 ∗𝑖 ) > 𝜎 −𝑚𝜆 (𝐹 ) for all 𝑖 . This

is true for the factors 𝑃 𝑗 by Proposition 2.18. Let us consider a factor 𝐴 =𝐺𝑖 . As 𝜆𝐺 ⩾ 𝜆,

(11) combined with (8) gives

𝑣𝜆𝐺 (𝐴 −𝐴∗) > 𝑣𝜆𝐺 (𝐴) + 𝜎 + 𝑣𝜆 (𝐺) − 𝑣𝜆𝐺 (𝐺) + 𝑑𝐺 (𝜆𝐺 − 𝜆).

Denote 𝐵 the (truncated) cofactor of𝐴 in𝐺 . Using 𝑣𝜆 (𝐴−𝐴∗)+𝑑𝐴 (𝜆𝐺 −𝜆) ⩾ 𝑣𝜆𝐺 (𝐴−𝐴∗)
(Lemma 2.25) together with 𝑑𝐺 = 𝑑𝐴 + 𝑑𝐵 , 𝑣𝜆 (𝐺) = 𝑣𝜆 (𝐴) + 𝑣𝜆 (𝐵), 𝑣𝜆𝐺 (𝐺) = 𝑣𝜆𝐺 (𝐴) +
𝑣𝜆𝐺 (𝐵) and Lemma 2.28, the previous inequality implies that

𝑣𝜆 (𝐴 −𝐴∗) > 𝑣𝜆 (𝐴) + 𝜎 +𝑚𝜆𝐺 (𝐵) −𝑚𝜆 (𝐵).

As𝑚𝜆𝐺 (𝐵) ⩾ 0 and𝑚𝜆 (𝐵) ⩽ 𝑚𝜆 (𝐹 ) (Corollary 2.24), we get the desired inequality

𝑣𝜆 (𝐴 −𝐴∗) − 𝑣𝜆 (𝐴) > 𝜎 −𝑚𝜆 (𝐹 ).
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We prove in a similar way the analogous assertion if 𝐴 = 𝐻𝑖 is a factor of 𝐻 .

Complexity. There is at most 1 + ⌈log
2
(𝑉𝐹 )⌉ = O(log

2
(𝑑𝑚𝜆 (𝐹 ))) = O(log

2
(𝑑𝜎))

recursive calls thanks to Proposition 2.37 (the+1 due to the fact that the initial slope 𝜆 can

take any value). At each level of the tree of recursive calls, the procedure PartialFacto
is called on a set of polynomials 𝑃 dividing 𝐺 or 𝐻 and whose degree sum is at most

𝑑𝐺 +𝑑𝐻 ⩽ 𝑑 , and with 𝜆𝑃 -precision 𝜎𝑃 for each 𝑃 . By Proposition 2.36, 𝜎𝑃 ⩽ 𝜎+𝑚𝜆 (𝐹 ) ⩽
2𝜎 for all 𝑃 , and we conclude thanks to Proposition 2.19. □

Proof of Theorem 1.8. Theorem 1.8 follows straightforwardly from Theorem 2.39, taking

into account the cost of the factorizations (7) of the various quasi-homogeneous initial

components. These factorizations are not trivial only when 𝜆 is a slope of Λ(𝐹 ), in which

case the degree of the underlying univariate factorization corresponds to the lattice

length of the edge of slope 𝜆. □

3 Application to convex-dense bivariate factorization
This section is dedicated to derive from Theorem 1.8 a fast algorithm for factoring a

bivariate polynomial 𝐹 ∈ K[𝑥,𝑦]. We follow closely [24], which generalizes the usual

factorization algorithm of [11, 13] to the case 𝐹 (0, 𝑦) non separable. To be consistent

with [11, 24], we denote from now on by F𝑖 the factors of 𝐹 in K((𝑥)) [𝑦] and by 𝐹 𝑗 the

factors of 𝐹 in K[𝑥,𝑦].

3.1 The recombination problem
In all what follows, we assume that the input 𝐹 ∈ K[𝑥,𝑦] is primitive and separable

with respect to 𝑦 (see [12] for fast separable factorization). We let 𝑑 := deg𝑦 (𝐹 ). We

normalize 𝐹 by requiring that its coefficient attached to the right end point of Λ(𝐹 )
equals 1. Up to permutation, 𝐹 admits a unique factorization

𝐹 = 𝐹1 · · · 𝐹𝜌 ∈ K[𝑥,𝑦], (12)

where each 𝐹 𝑗 ∈ K[𝑥,𝑦] is irreducible and normalized. Also, 𝐹 admits a unique analytic

factorization of shape

𝐹 = 𝑢F1 · · · F𝑠 ∈ K[[𝑥]] [𝑦], (13)

with F𝑖 ∈ K[[𝑥]] [𝑦] irreducible with leading coefficient 𝑥𝑛𝑖 , 𝑛𝑖 ∈ N and 𝑢 ∈ K[𝑥],
𝑢 (0) ≠ 0. We thus have

𝐹 𝑗 = 𝑐 𝑗F
𝑣𝑗1

1
· · · F 𝑣𝑗𝑠

𝑠 , 𝑗 = 1, . . . , 𝜌, (14)

for some unique 𝑣 𝑗𝑖 ∈ {0, 1}, and with 𝑐 𝑗 ∈ K[𝑥], 𝑐 𝑗 (0) = 1. The recombination problem

consists to compute the exponent vectors

𝑣 𝑗 = (𝑣 𝑗1, . . . , 𝑣 𝑗𝑠 ) ∈ {0, 1}𝑠
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for all 𝑗 = 1, . . . , 𝜌 . Then, the computation of the 𝐹 𝑗 ’s follows easily. Since 𝐹 is separable

by hypothesis, the vectors 𝑣 𝑗 form a partition of (1, . . . , 1) of length 𝜌 . In particular,

they form up to reordering the reduced echelon basis of the vector subspace

𝑉 :=
〈
𝑣1, . . . , 𝑣𝜌

〉
⊂ K𝑠

that they generate over K (in fact over any field). Hence, solving recombinations mainly

reduces to find a system of K-linear equations that determine 𝑉 ⊂ K𝑠
.

Let 𝜇 = (𝜇1, . . . , 𝜇𝑠 ) ∈ K𝑠
. Applying the logarithmic derivative with respect to 𝑦 to

(14) and multiplying by 𝐹 we get

𝜇 ∈ 𝑉 ⇐⇒ ∃𝛼1, . . . , 𝛼𝜌 ∈ K |
𝑠∑︁
𝑖=1

𝜇𝑖 F̂𝑖𝜕𝑦F𝑖 =
𝜌∑︁
𝑗=1

𝛼 𝑗𝐹 𝑗 𝜕𝑦𝐹 𝑗 , (15)

with notations 𝐹 𝑗 = 𝐹/𝐹 𝑗 and F̂𝑖 = 𝐹/F𝑖 . The reverse implication holds since the 𝐹 𝑗 ’s are

supposed to be separable [13, Lemma 1]. In [11], the author shows how to derive from

(15) a finite system of linear equations for 𝑉 that depends only on the F𝑖 ’s truncated

with 𝑥-adic precision 𝑑𝑥 + 1, assuming 𝐹 (0, 𝑦) separable of degree 𝑑 . For our purpose,

we will rather consider 𝑣𝜆-adic truncation of the F𝑖 ’s for a suitable 𝜆, under the weaker

hypothesis that 𝐹 is non degenerated.

3.2 Residues and recombinations
In what follows, we fix 𝜆 = 𝑚/𝑞 ∈ Q. Given 𝐺 ∈ K((𝑥)) [𝑦] and 𝜎 ∈ Q, the

𝑣𝜆-truncation of 𝐺 with precision 𝜎 is

[𝐺]𝜎
𝜆

:=
∑︁

𝑗+𝑖𝜆⩽𝜎
𝑔𝑖 𝑗𝑥

𝑗𝑦𝑖 ∈ K[𝑥±1] [𝑦] .

If 𝜆 = 0, this is the classical Gauss (or 𝑥-adic) truncation [𝐺]𝜎
0
= 𝐺 mod 𝑥𝜎+1

. If

𝐺 ∈ K[𝑥,𝑦], we can define the 𝜆-degree of 𝐺 ,

𝑑𝜆 (𝐺) := max( 𝑗 + 𝑖𝜆, 𝑔𝑖 𝑗 ≠ 0). (16)

Note that 𝐺 = [𝐺]𝑑𝜆 (𝐺 )
𝜆

. Moreover, we have

𝑑𝜆 (𝐺𝐻 ) = 𝑑𝜆 (𝐺) + 𝑑𝜆 (𝐻 ) and 𝑑𝜆 (𝐺 + 𝐻 ) ⩽ max(𝑑𝜆 (𝐺), 𝑑𝜆 (𝐻 )).

Let 𝜇 ∈ F𝑟 . Given the factorization (13), we let

𝐺𝜇 :=

𝑠∑︁
𝑖=1

𝜇𝑖
[
F̂𝑖𝜕𝑦F𝑖

]𝑑𝜆 (𝐹 )
𝜆

∈ K[𝑥,𝑦] . (17)

Recall the notation 𝑑 = deg𝑦 (𝐹 ). We denote 𝑦1, . . . , 𝑦𝑑 ∈ K(𝑥) the roots of 𝐹 . We denote

by 𝜌𝑘 = 𝜌𝑘 (𝜇) the residues of 𝐺𝜇/𝐹 at 𝑦𝑘 , that is

𝜌𝑘 :=
𝐺𝜇 (𝑥,𝑦𝑘 )
𝜕𝑦𝐹 (𝑥,𝑦𝑘 )

∈ K(𝑥), 𝑘 = 1, . . . , 𝑑 .
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These residues are well defined since 𝐹 is separable. The next key result is mainly a

consequence of [24, Proposition 8.7].

Proposition 3.1. Suppose 𝜆 ⩾ 0 and 𝐹 not degenerated. Then 𝜇 ∈ 𝑉 if and only if 𝜌𝑘 ∈ K
for all 𝑘 = 1, . . . , 𝑑 .

Proof. The direct implication follows from (15). Let us prove the converse, assuming

that the residues 𝜌𝑘 are constant. Let 𝜏 = 𝜏𝜆 as defined by (4). Given 𝑄 ∈ K((𝑥)) [𝑦], we

denote for short

𝜏0 (𝑄) = 𝑥−𝑣0 (𝜏 (𝑄 ) )𝜏 (𝑄) ∈ K[[𝑥]] [𝑦] . (18)

Hence 𝜏0 (𝐹 ) ∈ K[𝑥,𝑦] is a primitive polynomial with primitive factors 𝜏0 (𝐹 𝑗 ) in K[𝑥,𝑦]
and 𝜏0 (F𝑖 ) in K[[𝑥]] [𝑦]. Following (5), we get

𝑛 := deg𝑥 (𝜏0 (𝐹 )) = 𝑞(𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )).

Recall the notation 𝜆 =𝑚/𝑞. Let us consider

𝐺0

𝜇 :=

𝑟∑︁
𝑖=1

𝜇𝑖
[
𝜏0̂ (F𝑖 )𝜕𝑦𝜏0 (F𝑖 )

]𝑛+𝑚
0

. (19)

In other words, 𝐺0

𝜇 coincides with the polynomial defined by (17) when considering

the recombinations of the analytic factors 𝜏0 (F𝑖 ) of 𝜏0 (𝐹 ) using the Gauss valuation 𝑣0,

except that the precision is (for now) 𝑛 +𝑚 instead of 𝑛. Let 𝜙𝑘 (𝑥) := 𝑥−𝑚𝑦𝑘 (𝑥𝑞). We

have 𝜏 (𝐹 ) (𝑥, 𝜙𝑘 (𝑥)) = 𝐹 (𝑥𝑞, 𝑦𝑘 (𝑥𝑞)) = 0 for all 𝑘 so 𝜏0 (𝐹 ) has roots 𝜙1, . . . , 𝜙𝑑 .

Claim (see below for the proof). We have

𝐺0

𝜇

𝜕𝑦𝜏0 (𝐹 )
= 𝜏

( 𝐺𝜇

𝜕𝑦𝐹

)
.

Assuming that, the residues of 𝐺0

𝜇/𝜏0 (𝐹 ) at the roots of 𝜏0 (𝐹 ) are

𝐺0

𝜇 (𝑥, 𝜙𝑘 (𝑥))
𝜕𝑦𝜏0 (𝐹 ) (𝑥, 𝜙𝑘 (𝑥))

=
𝐺𝜇 (𝑥𝑞, 𝑦𝑘 (𝑥𝑞))
𝜕𝑦𝐹 (𝑥𝑞, 𝑦𝑘 (𝑥𝑞))

= 𝜌𝑘 (𝑥𝑞) ∈ K,

hence are constant by assumption. It follows from [24, Lemma 3.8] that𝐺0

𝜇 is a K-linear

combinations of 𝐸 𝑗 𝜕𝑦𝐸 𝑗 , where the polynomials 𝐸 𝑗 ∈ K[𝑥,𝑦] are the irreducible factors

of 𝜏0 (𝐹 ) over K. Since deg𝑥 𝐸 𝑗 𝜕𝑦𝐸 𝑗 ⩽ deg𝑥 𝜏0 (𝐹 ) ⩽ 𝑛, this implies

𝐺0

𝜇 = [𝐺0

𝜇]𝑛0 =

𝑟∑︁
𝑖=1

𝜇𝑖
[
𝜏0̂ (F𝑖 )𝜕𝑦𝜏0 (F𝑖 )

]𝑛
0
,

the second equality by (19), since𝑚 ⩾ 0 by assumption. Since 𝐹 is separable and not

degenerated, so is 𝜏0 (𝐹 ). Thus, we can apply [24, Proposition 8.7] to 𝜏0 (𝐹 ) and we

deduce that 𝐺0

𝜇 is a K-linear combination of the polynomials 𝜏0̂ (𝐹 𝑗 )𝜕𝑦𝜏0 (𝐹 𝑗 ), which in

turns implies that𝐺𝜇 is a K-linear combination of the polynomials 𝐹 𝑗 𝜕𝑦𝐹 𝑗 . Hence 𝜇 ∈ 𝑉
thanks to (15), as required. □
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Remark 3.2. The assumption 𝐹 not degenerated is crucial to solve recombinations

with 𝑣𝜆-precision 𝑑𝜆 (𝐹 ). Otherwise, we might need to compute the F𝑖 ’s with a higher

precision. We refer the reader to [24] for various options to solve the recombination

problem for degenerated polynomials in the 𝑥-adic case.

Proof of the claim. As 𝑣𝜆 (𝑦) = 𝜆, we deduce from (17) that

𝑦𝐺𝜇 =

𝑠∑︁
𝑖=1

𝜇𝑖
[
F̂𝑖𝑦𝜕𝑦F𝑖

]𝑑𝜆 (𝐹 )+𝜆
𝜆

. (20)

Now, using (4) and (16), we leave the reader to check that for all 𝐻 ∈ K(𝑥) [𝑦] and all

𝑎 ∈ Q, we have:

𝜏 (𝑦𝜕𝑦𝐻 ) = 𝑦𝜕𝑦 (𝜏 (𝐻 )) and 𝜏 ( [𝐻 ]𝑎
𝜆
) = [𝜏 (𝐻 )]𝑞𝑎

0
. (21)

Combined with (20), we get

𝜏 (𝑦𝐺𝜇) =
∑︁
𝑖

𝜇𝑖
[
𝜏 (F̂𝑖 )𝑦𝜕𝑦𝜏 (F𝑖 )

]𝑞𝑑𝜆 (𝐹 )+𝑚
0

.

Using now (18) together with 𝑣0 (𝜏 (F̂𝑖 )) + 𝑣0 (𝜏 (F𝑖 )) = 𝑣0 (𝜏 (𝐹 )) = 𝑞𝑣𝜆 (𝐹 ), we get

𝜏 (𝑦𝐺𝜇) = 𝑦𝑥 𝑣0 (𝜏 (𝐹 ) )
∑︁
𝑖

𝜇𝑖
[
𝜏0 (F̂𝑖 )𝜕𝑦𝜏0 (F𝑖 )

]𝑞𝑑𝜆 (𝐹 )−𝑞𝑣𝜆 (𝐹 )+𝑚
0

= 𝑦𝑥 𝑣0 (𝜏 (𝐹 ) )𝐺0

𝜇 .

It follows that

𝐺0

𝜇

𝜕𝑦𝜏0 (𝐹 )
=
𝑦𝑥 𝑣0 (𝜏 (𝐹 ) )𝐺0

𝜇

𝑦𝜕𝑦𝜏 (𝐹 )
=
𝜏 (𝑦𝐺𝜇)
𝜏 (𝑦𝜕𝑦𝐹 )

= 𝜏

( 𝐺𝜇

𝜕𝑦𝐹

)
,

the first equality by (18) and the second equality using (21) again. □

3.3 Computing equations for 𝑽
Since 𝐹 is separable, 𝜌𝑘 belongs to the separable closure of K(𝑥) and we can talk

about the derivative of 𝜌𝑘 . Hence, an obvious necessary condition for that 𝜌𝑘 ∈ K is

that its derivative vanishes. More precisely, we have the following lemma.

Lemma 3.3. Let 𝑝 ⩾ 0 be the characteristic of K. If 𝜌 ′
𝑘
= 0 then 𝜌𝑘 ∈ K(𝑥𝑝 ). If moreover

𝑝 = 0 or 𝑝 ⩾ 2𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )), then 𝜌𝑘 ∈ K.

Proof. If 𝜌 ′
𝑘
= 0, then clearly 𝜌𝑘 ∈ K(𝑥𝑝 ). If 𝑝 = 0, the claim follows. If 𝑝 > 0, we

consider the polynomial 𝜏0 (𝐹 ) defined above, of 𝑥-degree 𝑛 = 𝑞(𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )). Its

residue is 𝜌𝑘 (𝑥𝑞) which thus lives in K(𝑥𝑝𝑞). Hence, it’s straightforward to check that

we can divide the bound 𝑝 ⩾ 2𝑑𝑛 of [8, Lemma 2.4] by 𝑞 in this context. □

Let us consider the K-linear operator

D :

{
K(𝑥) [𝑦] −→ K(𝑥) [𝑦]

𝐺 ↦−→
(
𝐺𝑥𝐹𝑦 −𝐺𝑦𝐹𝑥

)
𝐹𝑦 −

(
𝐹𝑥𝑦𝐹𝑦 − 𝐹𝑦𝑦𝐹𝑥

)
𝐺

(22)

with the standard notations 𝐹𝑦 , 𝐹𝑥𝑦 , etc. for the partial derivatives.
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Lemma 3.4. We have 𝜌 ′
𝑘
= 0 for all 𝑘 = 1, . . . , 𝑑 if and only if 𝐹 divides D(𝐺𝜇) in the

ring K(𝑥) [𝑦].

Proof. Combining 𝜌𝑘 (𝑥) =
𝐺𝜇 (𝑥,𝑦𝑘 )
𝐹𝑦 (𝑥,𝑦𝑘 ) and 𝑦′

𝑘
(𝑥) = − 𝐹𝑥 (𝑥,𝑦𝑘 )

𝐹𝑦 (𝑥,𝑦𝑘 ) , we get

𝜌 ′
𝑘
(𝑥) =

D(𝐺𝜇) (𝑥,𝑦𝑘 )
𝐹 3

𝑦 (𝑥,𝑦𝑘 )
.

Thus 𝜌 ′
𝑘
= 0 if and only if D(𝐺𝜇) vanishes at all roots of 𝐹 , seen as a polynomial in 𝑦.

The result follows since 𝐹 is separable. □

Let us denote 𝐷𝜇 := D(𝐺𝜇) for short. We will need the following lemma.

Lemma 3.5. Suppose 𝜆 ⩾ 0. Then 3𝑣𝜆 (𝐹 ) ⩽ 𝑣𝜆 (𝐷𝜇) and 𝑑𝜆 (𝐷𝜇) ⩽ 3𝑑𝜆 (𝐹 ).

Proof. For any 𝑄 ∈ K[𝑥,𝑦], the support of 𝑥𝑄𝑥 and 𝑦𝑄𝑦 is contained in the support

of 𝑄 . Hence 𝑣𝜆 (𝑄) ⩽ 𝑣𝜆 (𝑥𝑄𝑥 ) and 𝑣𝜆 (𝑄) ⩽ 𝑣𝜆 (𝑦𝑄𝑦) while 𝑑𝜆 (𝑄) ⩾ 𝑑𝜆 (𝑥𝑄𝑥 ) and

𝑑𝜆 (𝑄) ⩾ 𝑑𝜆 (𝑦𝑄𝑦). As 𝑣𝜆 (𝑥) = 𝑑𝜆 (𝑥) = 1 and 𝑑𝜆 (𝑦) = 𝑣𝜆 (𝑦) = 𝜆 ⩾ 0, we get

𝑣𝜆 (𝑄𝑥 ), 𝑣𝜆 (𝑄𝑦) ⩾ 𝑣𝜆 (𝑄) and 𝑑𝜆 (𝑄𝑥 ), 𝑑𝜆 (𝑄𝑦) ⩽ 𝑑𝜆 (𝑄). (23)

In particular, we get from (17) that 𝑣𝜆 (𝐺𝜇) ⩾ 𝑣𝜆 (𝐹 ). On the other hand we have

𝑑𝜆 (𝐺𝜇) ⩽ 𝑑𝜆 (𝐹 ) by the very definition (17). The claim then follows from (22), using

moreover that 𝑣𝜆 and −𝑑𝜆 are valuations. □

Lemma 3.4 suggests to compute the 𝑣𝜆-adic Euclidean division of 𝐷𝜇 by 𝐹 up to a

sufficient precision to test divisibility in K(𝑥) [𝑦]. A difficulty is that 𝐹 is not necessarily

𝜆-monic, hence we do not have access to Proposition 2.16. To solve this issue, we adapt

[24, Section 5] to our context. We get:

Proposition 3.6. Suppose 𝜆 ⩾ 0. Given F1, . . . , F𝑠 with relative 𝜆-precision 𝑑𝜆 (𝐹 ) −𝑣𝜆 (𝐹 ),
we can compute a linear map

𝜙 : K𝑠 → K𝑁 , 𝑁 ∈ O
(
𝑑
(
𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )

) )
such that 𝜇 ∈ ker(𝜙) if and only if 𝐹 |𝐷𝜇 , using at most ˜O(𝑠𝑁 ) operations in K.

Proof. Note first that𝐺𝜇 only depends on the F𝑖 ’s with relative 𝜆-precision 𝑑𝜆 (𝐹 )−𝑣𝜆 (𝐹 )
by (23) and Lemma 2.40. Let 0 ⩽ 𝛼 < 𝑞 and 𝑘 ∈ Z be the unique integers such that

𝐹 := 𝜏 (𝑥𝑘𝑦𝛼𝐹 ) satisfies

𝑞 | deg𝑦 (𝐹 ) = 𝑑 + 𝛼 and 0 ⩽ 𝑣0 (𝐹 ) < 𝑞. (24)

These conditions ensure that both 𝐹 and its leading coefficient 𝑐 := lc𝑦 (𝐹 ) lie in the

subring B𝜆 ⊂ K[𝑥,𝑦] (Lemma 2.1). Let 𝑘 ′ = 𝑘 − 2𝑣𝜆 (𝐹 ) and �̃�𝜇 := 𝜏 (𝑥𝑘 ′𝑦𝛼𝐷𝜇). Note

that 𝐹 divides 𝐷𝜇 in K(𝑥) [𝑦] if and only if 𝐹 divides �̃�𝜇 in K(𝑥) [𝑦]. Moreover, 𝑘 ′ does

not depend on 𝜇 so the map 𝜇 ↦→ �̃�𝜇 is K-linear.
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Claim. We have 𝑣0 (�̃�𝜇) ⩾ 𝑣0 (𝐹 ) and deg𝑥 (�̃�𝜇) ⩽ 3 deg𝑥 (𝐹 ).

Proof of the claim. As 𝜆 ⩾ 0, Lemma 3.5 and 𝑣0 (𝜏 (𝑄)) = 𝑞𝑣𝜆 (𝑄) give

𝑣0 (�̃�𝜇) = 𝑞
(
𝑘 ′ + 𝛼𝜆 + 𝑣𝜆 (𝐷𝜇)

)
⩾ 𝑞

(
𝑘 + 𝛼𝜆 + 𝑣𝜆 (𝐹 )

)
= 𝑣0 (𝐹 ) ⩾ 0.

In a similar way, using now deg𝑥 (𝜏 (𝑄)) = 𝑞𝑑𝜆 (𝑄), we get

deg𝑥 (�̃�𝜇) ⩽ 𝑞
(
𝑘 ′ + 𝛼𝜆 + 3𝑑𝜆 (𝐹 )

)
= 2𝑞

(
𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )

)
+ 𝑞

(
𝑘 + 𝛼𝜆 + 𝑣𝜆 (𝐹 )

)
= 2

(
deg𝑥 (𝐹 ) − 𝑣0 (𝐹 )

)
+ deg𝑥 (𝐹 )

⩽ 3 deg𝑥 (𝐹 ). □

As 0 ⩽ 𝑣0 (𝐹 ) ⩽ 𝑣0 (�̃�𝜇), 𝐹 divides �̃�𝜇 in K(𝑥) [𝑦] if and only if it divides �̃�𝜇 in

K[𝑥] [𝑦] by Gauss’ lemma. To reduce to the monic case, we localize K[𝑥] at some prime

𝑎 ∈ K[𝑥𝑞] coprime to 𝑐 := lc𝑦 (𝐹 ). The Euclidean division

�̃�𝜇 =𝑄𝜇𝐹 + 𝑅𝜇 ∈ K[𝑥] (𝑎) [𝑦] (25)

is now well defined. Any 𝑄 ∈ B𝜆 ⊂ K[𝑥,𝑦] has a unique 𝑎-adic expansion

𝑄 =

⌊deg(𝑄 )/deg(𝑎) ⌋∑︁
𝑖=0

𝑞𝑖 (𝑥,𝑦)𝑎(𝑥)𝑖 with 𝑞𝑖 ∈ B𝜆 and deg𝑥 𝑞𝑖 < deg𝑎. (26)

Note that 𝑞𝑖 ∈ B𝜆 since 𝑎 ∈ B𝜆 . Let

{
𝑄
}𝑛
𝑚

=
∑𝑛

𝑖=𝑚 𝑞𝑖𝑎
𝑖

and

{
𝑄
}𝑛

=
{
𝑄
}𝑛

0
. Since

deg𝑥 (�̃�𝜇) ⩽ 3 deg𝑥 (𝐹 ), we deduce from (the proof of) [24, Lemma 5.2] that 𝐹 divides

�̃�𝜇 if and only if{
𝑄𝜇

}𝑛
𝑚
=
{
𝑅𝜇

}𝑛
= 0, with 𝑚 :=

⌊
2𝑑𝑥

deg𝑎

⌋
+ 1 and 𝑛 :=

⌈
3𝑑𝑥

deg𝑎

⌉
,

where 𝑑𝑥 = deg𝑥 (𝐹 ). We have 𝑑𝑥 = 𝑞(𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )) by (24). Since both polynomials

{𝑄𝜇}𝑛𝑚 and {𝑅𝜇}𝑛 live in B𝜆 , we deduce from Corollary 2.3 that their supports have size

O(𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ))). The linear map

𝜙 (𝜇) :=
(
{𝑄𝜇}𝑛𝑚/𝑎𝑚, {𝑅𝜇}𝑛

)
thus satisfies the conditions of Proposition 3.6. Let us look at complexity issues. If

𝑄1, 𝑄2 ∈ B𝜆 have 𝑥-degrees O(𝑑𝑥 ) and relative 𝑦-degrees deg𝑦 (𝑄𝑖 ) − 𝑣𝑦 (𝑄𝑖 ) ∈ O(𝑑),
we compute {𝑄1}𝑛 , {𝑄2}𝑛 and {𝑄1𝑄2}𝑛 in time

˜O(𝑑𝑑𝑥/𝑞) thanks to Proposition 2.5

since all operations in (26) take place in B𝜆 . We have 𝑐 ∈ K[𝑥𝑞] ⊂ B𝜆 invertible modulo

𝑎, and computing {𝑐−1}𝑛 costs
˜O(𝑑𝑥/𝑞). Then, adapting the proof of Proposition 2.8

in the 𝑎-adic case, we compute (25) with 𝑎-adic precision 𝑛 and thus 𝜙 (𝜇) in time

˜O(𝑑𝑑𝑥/𝑞) = ˜O(𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ))). To build the matrix of 𝜙 , we compute 𝜙 (𝜇𝑖 ) where

the 𝜇𝑖 ’s run over the canonical basis of K𝑠
. Given the F𝑖 ’s with relative 𝜆-precision

𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ), computing 𝐺𝜇𝑖 =
[
F̂𝑖𝜕𝑦F𝑖

]𝑑𝜆 (𝐹 )
𝜆

costs
˜O(𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )) thanks to

Corollary 2.13. Summing over all 𝑖 = 1, . . . , 𝑠 , we get the result. □
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Remark 3.7. We need to compute 𝑎 ∈ K[𝑥𝑞] coprime to 𝑐 . As 𝑎 = 𝑎0 (𝑥𝑞) and 𝑐 = 𝑐0 (𝑥𝑞),
we look for 𝑎0 coprime to 𝑐0. We have deg𝑥 (𝑐0) ⩽ 𝑑𝑥/𝑞 = 𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ). If Card(K) ⩾
𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ), we use multipoint evaluation of 𝑐0 at deg𝑥 (𝑐0) distinct elements of K
to find 𝑧 ∈ K such that 𝑐0 (𝑧) ≠ 0, and we take 𝑎(𝑥) = 𝑥𝑞 − 𝑧. Otherwise, we follow a

similar strategy in a finite extension of K of degree O(log(𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )), considering

now 𝑎 = 𝑎0 (𝑥𝑞), with 𝑎0 the minimal polynomial of 𝑧 over K. The cost fits in the aimed

bound.

Corollary 3.8. If K has characteristic zero or greater than 2𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )) and 𝐹 is
non degenerated, then (𝑣1, . . . , 𝑣𝜌 ) is the reduced echelon basis of ker(𝜙).

Proof. Follows from Proposition 3.1, Lemma 3.3, Lemma 3.4 and Proposition 3.6. □

If K has small characteristic 𝑝 , we need extra conditions to ensure 𝜌𝑘 ∈ K. These

conditions rely on linear algebra over the prime field F𝑝 of K. They are based on

Niederreiter’s operator, which was originally introduced for univariate factorization

over finite fields [14], and used then for bivariate factorization in [11]. We deliberately

do not go into the details here. We assume 𝜆 ⩾ 0. We introduce the F𝑝 -linear map

𝜓 :

{
ker(𝜙 |F𝑠𝑝 ) −→ K[𝑥𝑝 , 𝑦𝑝 ]𝑝𝑑𝜆,𝑝 (𝑑−1)

𝜇 ↦−→ 𝐺
𝑝
𝜇 − 𝜕

𝑝−1

𝑦 (𝐺𝜇𝐹
𝑝−1).

In contrast to [11], the subscripts indicate the 𝜆-degree and the 𝑦-degree.

Proposition 3.9. The map𝜓 is well-defined and (𝑣1, . . . , 𝑣𝜌 ) is the reduced echelon basis
of ker(𝜓 ).

Proof. We have 𝜕𝑦𝐺
𝑝
𝜇 = 0 in characteristic 𝑝 . Moreover, 𝜕

𝑝
𝑦 (𝑦𝑖 ) = 0 mod 𝑝 for all 𝑖 ⩾ 0.

We deduce that 𝜕𝑦 (𝜓 (𝜇)) = 0, so𝜓 (𝜇) is a polynomial in 𝑦𝑝 of 𝑦-degree 𝑝 (𝑑 − 1). Since

𝑑𝜆 (𝑄𝑦) ⩽ 𝑑𝜆 (𝑄) (proof of Lemma 3.5),𝜓 (𝜇) has 𝜆-degree at most 𝑝𝑑𝜆 . Since moreover

𝜇 ∈ ker(𝜙), we have 𝜌 ′
𝑘
= 0 by Proposition 3.6 and Lemma 3.5, hence 𝜌𝑘 ∈ K(𝑥𝑝 )

by Lemma 3.3. This forces 𝜓 (𝜇) to be a polynomial in 𝑥𝑝 (see [11, Lemma 4]). Hence

𝜓 is well-defined. The second claim follows from [11, Proposition 11] together with

Proposition 3.1. □

Proposition 3.10. Let 𝜆 ⩾ 0 and 𝑁 = 𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )). Assume 𝐹 ∈ K[𝑥,𝑦] non
degenerated. Given the factors F1, . . . , F𝑠 ∈ K[[𝑥]] [𝑦] of 𝐹 with relative 𝜆-precision
𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ), we can solve the recombination problem with

1. ˜O(𝑠𝑁 ) + O(𝑠𝜔−1𝑁 ) operations in K if 𝑝 = 0 or 𝑝 ⩾ 2𝑁 ,

2. O(𝑘𝑠𝜔−1𝑁 ) operations in F𝑝 if K = F𝑝𝑘 .

Proof sketch. We can compute the reduced echelon basis of the kernel of a matrix of size

𝑠 × 𝑁 with coefficient in a field L with O(𝑠𝜔−1𝑁 ) operations in L [19, Theorem 2.10].

Hence, the first point follows from Proposition 3.1 and Corollary 3.8. Suppose that

K = F𝑝𝑘 . Thus K is an F𝑝-vector space of dimension 𝑘 and it follows again from

Proposition 3.1 that we can build the matrix of 𝜙 |F𝑠𝑝 and compute a basis of its kernel
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over F𝑝 in the aimed cost. To build the matrix of𝜓 we use again the operator 𝜏 to reduce

to the case 𝜆 = 0. We apply then [11, Proposition 13], using again that the complexity

can be divided by 𝑞 since we work in the sparse subring B𝜆 ⊂ K[𝑥,𝑦] (in the non monic

case, we localize at some 𝑎 ∈ K[𝑥𝑞] as in the proof of Proposition 3.1). The resulting

complexity fits in the aimed cost. The matrix of𝜓 having size at most 𝑠 × 𝑘𝑁 over F𝑝 ,

we conclude. □

3.4 Proving Theorem 1.2 and Corollary 1.5
The key point is to choose a good slope 𝜆 before applying Proposition 3.10. Let

𝐹 ∈ K[𝑥,𝑦] of 𝑦-degree 𝑑 with Newton polygon 𝑁 (𝐹 ) and lower convex hull Λ(𝐹 ). Let

𝑉 = Vol(𝑁 (𝐹 )).

Lemma 3.11. Let 𝜆 := 𝜆𝐹 be the average slope of Λ(𝐹 ) (Definition 2.33). Assume that 𝑦
does not divide 𝐹 . Then

𝑉 ⩽ 𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )) ⩽ 2𝑉 .

Proof. It is a similar proof as that of Proposition 2.36. Consider the bounding parallelo-

gram𝐴𝐵𝐶𝐷 of 𝑁 (𝐹 ) with two vertical sides and two sides of slope −𝜆. See Figure 6. We

have Vol(𝐴𝐵𝐶𝐷) = 𝑑 (𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 )) which gives the first inequality. Consider 𝐼 and 𝐽

the left and right end points of Λ(𝐹 ) and let 𝐾 ∈ [𝐵𝐶] ∩ 𝑁 (𝐹 ) and 𝐿 ∈ [𝐴𝐷] ∩ 𝑁 (𝐹 ).
Then

𝑉 ⩾ Vol(𝐼 𝐽𝐾) + Vol(𝐼 𝐽𝐿) = Vol(𝐼𝐵𝐶𝐽 )
2

+ Vol(𝐼𝐴𝐷𝐽 )
2

=
Vol(𝐴𝐵𝐶𝐷)

2

,

the inequality since 𝐼 𝐽𝐾 and 𝐼 𝐽𝐿 are contained in 𝑁 (𝐹 ), and the first equality since (𝐼 𝐽 )
is parallel to (𝐴𝐷) and (𝐶𝐷) by choice of 𝜆 = 𝜆𝐹 . The result follows. □

Previous results lead to algorithm Factorization below.

Algorithm 2: Factorization(𝐹 )
Input: 𝐹 ∈ K[𝑥,𝑦] primitive, separable in 𝑦, non degenerated, with 𝜆𝐹 ⩾ 0.

Output: The irreducible factorization of 𝐹 over K

1 if 𝑦 divides 𝐹 then 𝐿 = [𝑦] and 𝐹 ← 𝐹/𝑦 else 𝐿 ← [ ];
2 𝜆 ← 𝜆𝐹 and 𝜎 ← 𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ) +𝑚𝜆 (𝐹 );
3 [F1, . . . , F𝑠 ] ← Facto(𝐹, 𝜆, 𝜎);
4 if 𝑠 = 1 then return 𝐿 ∪ [F1];
5 Compute the reduced echelon basis (𝑣1, . . . , 𝑣𝜌 ) of 𝑉 using Proposition 3.10;

6 for 𝑗 = 1, . . . , 𝜌 do
7 Compute 𝐹 𝑗 := [lc𝑦 (𝐹 )

∏𝑠
𝑖=1
F 𝑣𝑗𝑖
𝑖
]𝑑𝜆 (𝐹 )
𝜆

;

8 Compute the primitive part 𝐹 𝑗 of 𝐹 𝑗 with respect to 𝑦

9 return 𝐿 ∪ [𝐹1, . . . , 𝐹𝜌 ];
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𝐾

𝐽

𝐶

Figure 6: Proof of Lemma 3.11. In dark blue, the polygon𝑁 (𝐹 ); in light blue, its bounding

parallelogram of slope 𝜆𝐹 .

Proposition 3.12. Algorithm Factorization is correct. Up to the cost of univariate
factorizations, it takes at most

1. ˜O(𝑠𝑉 ) + O(𝑠𝜔−1𝑉 ) operations in K if 𝑝 = 0 or 𝑝 ⩾ 4𝑉 ,

2. O(𝑘𝑠𝜔−1𝑉 ) operations in F𝑝 if K = F𝑝𝑘 .

Proof. By Theorem 2.39, Step 3 computes the F𝑖 ’s with relative 𝜆-precision at least

𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ). Since 𝜆𝐹 ⩾ 0 by assumption, Proposition 3.10 and Lemma 3.11 ensure

that the 𝑣 𝑗 ’s at Step 5 are solutions to the recombination problem (11). Since 𝐹 is

primitive, so are the 𝐹 𝑗 ’s. Since 𝑑𝜆 (lc(𝐹 )/lc(𝐹 𝑗 )) +𝑑𝜆 (𝐹 𝑗 ) ⩽ 𝑑𝜆 (𝐹 ) we have 𝐹 𝑗 =
lc(𝐹 )
lc(𝐹 𝑗 ) 𝐹 𝑗

so 𝐹 𝑗 is the primitive part of 𝐹 𝑗 . Hence the algorithm returns a correct answer. Since

𝑚𝜆 (𝐹 ) ⩽ 𝑑𝜆 (𝐹 ) − 𝑣𝜆 (𝐹 ) (Definition 2.22), we have 𝜎 ⩽ 4𝑉 /𝑑 by Lemma 3.11. Hence

Step 3 costs
˜O(𝑉 ) by Theorem 2.39. Step 5 fits in the aimed bound by Proposition 3.10 and

Lemma 3.11. Using technique of subproduct trees, Step 7 costs
˜O(deg(𝐹 𝑗 ) (𝑑𝜆 (𝐹 )−𝑣𝜆 (𝐹 ))

by Corollary 2.13, and computing primitive parts at Step 8 has the same cost. Summing

over 𝑗 = 1, . . . , 𝜌 the overall cost of Step 6 is
˜O(𝑑 (𝑑𝜆 (𝐹 )−𝑣𝜆 (𝐹 )) = ˜O(𝑉 ). This concludes

the proof. □

Proof of Theorem 1.2. If 𝜆𝐹 ⩾ 0, Theorem 1.2 follows immediately from Proposition 3.12

since 𝑠 is smaller or equal to the lower lattice length 𝑟 of 𝑁 (𝐹 ). Note that testing

non degeneracy amounts to test squarefreeness of some univariate polynomials whose

degree sum is 𝑟 , hence costs only
˜O(𝑟 ) operations in K. If 𝜆𝐹 < 0, we apply algorithm

Factorization to the reciprocal polynomial 𝐹 of 𝐹 , which satisfies now 𝜆𝐹 ⩾ 0. We
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recover the factors of 𝐹 as the reciprocal factors of 𝐹 . Since 𝐹 has same 𝑉 , same 𝑠 and

same 𝑟 than 𝐹 , the cost remains unchanged. □

Proof of Corollary 1.5. The corollary follows straightforwardly from Theorem 1.2. How-

ever, let us explain for the sake of completeness how to compute quickly the minimal

lower lattice length 𝑟0 (𝐹 ) = 𝑟0 (𝑁 (𝐹 )). Recall from (1) that, for a lattice polygon 𝑃 ,

𝑟0 (𝑃) = min

{
𝑟 (𝜏 (𝑃)) | 𝜏 ∈ Aut(Z2)

}
,

where 𝑟 (𝜏 (𝑃)) stands for the lattice length of the lower convex hull Λ(𝜏 (𝑃)) and Aut(Z2)
stands for the group of affine automorphisms. □

Lemma 3.13. Let 𝑃 be a lattice polygon, with edges 𝐸1, . . . , 𝐸𝑛 . Denote 𝑤𝑖 ∈ Z2 the
inward orthogonal primitive vector of 𝐸𝑖 . There exist 𝜏𝑖 , 𝜏 ′𝑖 ∈ 𝐺𝐿2 (Z) with det(𝜏𝑖 ) = 1 and
det(𝜏 ′𝑖 ) = −1 and such that 𝜏𝑖 (𝑤𝑖 ) = 𝜏 ′𝑖 (𝑤𝑖 ) = (1, 0). Then

𝑟0 (𝑃) = min

(
𝑟 (𝜏1 (𝑃)), 𝑟 (𝜏 ′1 (𝑃)), . . . , 𝑟 (𝜏𝑛 (𝑃)), 𝑟 (𝜏 ′𝑛 (𝑃))

)
.

Geometrically, the maps 𝜏𝑖 and 𝜏 ′𝑖 simply send 𝐸𝑖 to a vertical left hand edge. Such maps
are straightforward to compute (note that they are not unique).

Proof. Since the lower lattice length is invariant by translation, it’s sufficient to look

for a map 𝜏 ∈ 𝐺𝐿2 (Z) that reaches 𝑟0. Let us first consider 𝜏 ∈ 𝐺𝐿2 (R). Consider the

set 𝐼𝜏 = { 𝑗 | 𝜏 (𝐸 𝑗 ) ⊂ Λ(𝜏 (𝑃)} of the indices of the lower edges of 𝜏 (𝑃). Denoting

𝑑 𝑗 (𝜏) = det((1, 0), 𝜏 (𝑤 𝑗 )), we have

𝑗 ∈ 𝐼𝜏 ⇐⇒ 𝑑 𝑗 (𝜏) > 0.

The maps 𝜏 ↦→ 𝑑 𝑗 (𝜏) being continuous, we deduce that 𝐼𝜏 ⊂ 𝐼𝜏 ′ for all 𝜏 ′ ∈ 𝐺𝐿2 (R)
close enough to 𝜏 , and with equality 𝐼𝜏 = 𝐼𝜏 ′ if 𝑑 𝑗 (𝜏) ≠ 0 for all 𝑗 = 1, . . . , 𝑛. Now, if

𝜏, 𝜏 ′ ∈ 𝐺𝐿2 (Z) then 𝐼𝜏 ⊂ 𝐼𝜏 ′ implies 𝑟 (𝜏 (𝑃)) ⩽ 𝑟 (𝜏 ′ (𝑃)) and equality 𝐼𝜏 = 𝐼𝜏 ′ implies

equality of the lower lattice lengths. It follows that 𝑟0 is reached at 𝜏 ∈ 𝐺𝐿2 (Z) such

that 𝑑𝑖 (𝜏) = 0 for some 𝑖 (such a 𝜏 exists for each 𝑖). This forces 𝜏 (𝑤𝑖 ) = ±(1, 0) and

we may suppose 𝜏 (𝑤𝑖 ) = (1, 0) since the lower lattice length is invariant by vertical

axis symmetry. But if 𝜏 ′ ∈ 𝐺𝐿2 (Z) is another map such that 𝜏 ′ (𝑤𝑖 ) = (1, 0) and which

satisfies moreover det(𝜏) = det(𝜏 ′), then

𝑑 𝑗 (𝜏 ′) = det

(
𝜏 ′ (𝑤𝑖 ), 𝜏 ′ (𝑤 𝑗 )

)
= det(𝜏 ′) det(𝑤𝑖 ,𝑤 𝑗 ) = det(𝜏) det(𝑤𝑖 ,𝑤 𝑗 ) = 𝑑 𝑗 (𝜏)

for all 𝑗 = 1, . . . , 𝑛, from which it follows that 𝐼𝜏 = 𝐼𝜏 ′ , hence 𝑟 (𝜏 (𝑃)) = 𝑟 (𝜏 ′ (𝑃)). The

lemma follows. □
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[13] Grégoire Lecerf. New recombination algorithms for bivariate polynomial factor-

ization based on Hensel lifting. Applicable Algebra in Engineering, Communication
and Computing, 21(2):151–176, 2010. doi: 10.1007/s00200-010-0121-5.

[14] Harald Niederreiter. Factorization of polynomials and some linear-algebra prob-

lems over finite fields. Linear Algebra and its Applications, 192:301–328, 1993.

doi: 10.1016/0024-3795(93)90247-L.

[15] Adrien Poteaux and Marc Rybowicz. Improving complexity bounds for the com-

putation of Puiseux series over finite fields. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation — ISSAC’15, pages 299–306.

Association for Computing Machinery, 2015. doi: 10.1145/2755996.275665.

[16] Adrien Poteaux and Martin Weimann. Computing the equisingularity type of a

pseudo-irreducible polynomial. Applicable Algebra in Engineering, Communication
and Computing, 31(5):435–460, 2020. doi: 10.1007/s00200-020-00451-x.

[17] Adrien Poteaux and Martin Weimann. Computing Puiseux series: a fast divide and

conquer algorithm. Annales Henri Lebesgue, 4:1061–1102, 2021. doi: 10.5802/ahl.97.

[18] Adrien Poteaux and Martin Weimann. Local polynomial factorisation: improving

the Montes algorithm. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation — ISSAC’22, pages 149–157. Association for Computing

Machinery, 2022. doi: 10.1145/3476446.3535487.

[19] Arne Storjohann. Algorithms for matrix canonical forms. Thesis 13922, ETH Zürich,
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