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Abstract

We show that if a 2-tower (𝐹𝑛)𝑛⩾0 of number fields does not contain infinitely

many Galois quartic extensions, then the structure of the lattice of subfields of the

union 𝐹 of the 𝐹𝑛 is completely determined by studying the subfields of 𝐹 up to

some degree.
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1 Introduction
We call a sequence (𝐹𝑛)𝑛⩾0 of number fields a 2-tower if 𝐹𝑛 ⊆ 𝐹𝑛+1 and the degrees

[𝐹𝑛+1 : 𝐹𝑛] are exactly 2 for every 𝑛. A 2-tower (𝐹𝑛)𝑛⩾0 of number fields is thin (from 𝐹0)
if the 𝐹𝑛 are the only subfields of 𝐹 =

⋃
𝑛⩾0

𝐹𝑛 containing 𝐹0 which have finite degree

over 𝐹0 — see [4], and [5, Prop. 13.1] in the context of cyclotomic fields. Given a 2-tower

F = (𝐹𝑛)𝑛⩾0 such that (𝐹𝑛)𝑛⩾𝑚 is thin for some 𝑚 ⩾ 1, with 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 , for each

ℓ ⩾ 𝑚 + 1, we let Φ(F , ℓ) denote the set of intermediate fields of degree 2
ℓ

that are

different from 𝐹ℓ , namely,

Φ(F , ℓ) =
{
𝐿 : 𝐹0 ⊆ 𝐿 ⊆ 𝐹 and [𝐿 : 𝐹0] = 2

ℓ
and 𝐿 ≠ 𝐹ℓ

}
.

We prove (note that the third statement is trivially equivalent to the second one):

∗
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Theorem 1.1. Let 𝐹0 be a number field. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 .

Assume that the tower (𝐹𝑛)𝑛⩾𝑚 is thin for some𝑚 ⩾ 1. Let ℓ ⩾ 𝑚 + 1.

1. All fields in Φ(F , ℓ) are subfields of 𝐹ℓ+𝑚 .

2. If some Φ(F , ℓ) is non-empty but each of Φ(F ,𝑚 + 1), . . . , Φ(F , 2𝑚) is empty, then
there is some 𝑛 ⩾ 2𝑚 such that 𝐹𝑛+2/𝐹𝑛 is Galois, hence cyclic.

3. If for every 𝑛 ⩾ 2𝑚 the extension 𝐹𝑛+2/𝐹𝑛 is not cyclic and each of Φ(F ,𝑚 + 1), . . . ,
Φ(F , 2𝑚) is empty, then for every ℓ ⩾ 𝑚 + 1, Φ(F , ℓ) is empty.

Motivated by a problem of Julia Robinson, we studied thin 2-towers in [4]. There we

prove that a 2-tower is thin if and only if there is no quartic extension within it which

is Galois with Galois group the Klein group 𝑉4 of 4 elements — see [4, Thm. 2.4]. It is

easy to see that, for a thin tower, the only subfield of infinite degree of 𝐹 is 𝐹 itself —

see [4, Rem. 2.2]. Nevertheless, this need not be true if (𝐹𝑛)𝑛⩾𝑚 is thin for some𝑚 ⩾ 1,

while (𝐹𝑛)𝑛⩾𝑚−1 is not — see [4, Thm. 1.4-3] for an example with𝑚 = 1:

𝐾2,0 = Q(
√

2) ∪ Q(
√︃

2 +
√

2) ∪ · · · is a subfield of

𝐾2,1 = Q(
√

3) ∪ Q(
√︃

2 +
√

3) ∪ Q(

√︂
2 +

√︃
2 +

√
3) ∪ · · ·

that has infinite degree over Q and 𝐾2,1
is thin from Q(

√
3) but not from Q. Intermediate

fields of finite degree over 𝐹0 that are different from any 𝐹𝑛 also can appear in this case.

In that paper, we developed some tools for𝑚 = 1 that eventually allowed us to determine

the structure of subfields of 𝐹 for infinitely many towers — this is a contribution to the

study of the lattice of subfields of infinite extensions of Q beyond the cyclotomic case.

Nevertheless, for𝑚 ⩾ 2, the situation is much more involved. In this work, we generalize

some of these tools to any𝑚 ⩾ 1 and produce two infinite families of examples with

𝑚 = 2 for which we completely determine the structure of subfields.

For 2-towers that are thin from some point on, as it is written, the second statement

of Theorem 1.1 gives a finiteness criterion for having a cyclic quartic extension within

the 2-tower. Note that the first and third statements together give the finiteness result

the title refers to. Indeed, if one knows that a 2-tower as in Theorem 1.1 has no cyclic

quartic subextension after some point, then by the third statement it says that if there

is no intermediate subfield in a finite piece of the tower, then every Φ(F , ℓ) must be

empty, reducing the problem of determining the lattice of subfields of 𝐹 to the problem

of studying the subfields of 𝐹 up to some degree (by the first statement). The proof is

given in Section 2. Note that, in the second statement, proving that 𝐹𝑛+2/𝐹𝑛 is Galois is

the same as proving that it is cyclic, because if it were Klein this would contradict the

thinness from𝑚.

Finally, Section 3 is dedicated to the construction of concrete infinite families of

towers for which Theorem 1.1 applies and for which we compute the lattice of subfields

— see Figure 1.

For basic facts on lattices of subfields in the abelian case, see for instance [5, Ch. 14].
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2 Proof of the theorem
We will often use without explanation the fact that if 𝑀/𝐾 and 𝑀/𝐿 are Galois

extensions of number fields, then 𝑀/𝐾 ∩ 𝐿 is Galois (apply [1, Ch. 11, Ex. 11.10, p. 98],

taking into account that, in our case, 𝑀 is always finite over 𝐾 ∩ 𝐿).

The following lemma generalizes [4, Lem. 2.6]. It implies Item 1 of Theorem 1.1.

Lemma 2.1. Let 𝑚 ⩾ 1 and 𝑘 ⩾ 𝑚 + 1 be integers. Let (𝐹𝑛)𝑛⩾0 be a 2-tower and
𝐹 =

⋃
𝑛⩾0

𝐹𝑛 . If the tower (𝐹𝑛)𝑛⩾𝑚 is thin and 𝐿 is a subfield of 𝐹 which contains 𝐹0, then
either 𝐿 is a subfield of 𝐹𝑘 or [𝐿 : 𝐹0] ⩾ 2

𝑘−𝑚+1. So, if 𝐿 has degree 2
ℓ over 𝐹0 for some

ℓ ⩾ 1, then 𝐿 is a subfield of 𝐹ℓ+𝑚 .

Proof. Assume that 𝐿 is not a subfield of 𝐹𝑘 . If 𝐿 has infinite degree over 𝐹0, there is

nothing to prove. Assume that 𝐿 has finite degree over 𝐹0, so also 𝐹𝑚𝐿 has finite degree

over 𝐹0, hence 𝐹𝑚𝐿 has finite degree over 𝐹𝑚 . Since (𝐹𝑛)𝑛⩾𝑚 is thin, there is some 𝑗 ⩾ 𝑚
such that 𝐹𝑚𝐿 = 𝐹 𝑗 . Since 𝐿 is not a subfield of 𝐹𝑘 , we have 𝑗 ⩾ 𝑘 + 1. Since

2
𝑚 [𝐿 : 𝐹0] = [𝐹𝑚 : 𝐹0] [𝐿 : 𝐹0] ⩾ [𝐹𝑚𝐿 : 𝐹0] = [𝐹 𝑗 : 𝐹0] = 2

𝑗 ,

we have [𝐿 : 𝐹0] ⩾ 2
𝑗−𝑚 ⩾ 2

𝑘−𝑚+1
. □

Definition 2.2. If F = (𝐹𝑛)𝑛⩾0 is a 2-tower and 𝑐 ⩾ 1 and 𝑢 ⩾ 𝑐 + 1 are integers, we say
that the property 𝐻𝑐 (F , 𝑢) is true if at least one of the following extensions (whenever the
indices are non-negative integers) is Galois:

𝐹𝑢+1/𝐹2𝑐

𝐹𝑢+1/𝐹2𝑐−1 𝐹𝑢+2/𝐹2𝑐−1

...
...

. . .

𝐹𝑢+1/𝐹𝑐+1 𝐹𝑢+2/𝐹𝑐+1 · · · 𝐹𝑢+𝑐/𝐹𝑐+1

Note that there are 𝑐 rows and 𝑐 columns if and only if 𝑢 ⩾ 2𝑐 − 1, otherwise some

of the listed extensions (e.g. 𝐹𝑢+1/𝐹2𝑐 ) do not make sense. Nevertheless, since 𝑢 ⩾ 𝑐 + 1,

there is always at least the whole last line of extensions remaining in the list and, since

𝑐 ⩾ 1, there is at least one extension remaining in this line, namely 𝐹𝑢+1/𝐹𝑐+1 (note that,

if 𝑐 ⩾ 2, then the last line has at least two distinct extensions remaining).

Remark 2.3. If the property 𝐻𝑐 (F , 𝑢) is true for some 𝑢 ⩾ 2𝑐 + 1, then there exists

𝑛 ⩾ 2𝑐 + 1 such that 𝐹𝑛+1/𝐹𝑛−1 is Galois.

Lemma 2.4. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝑐 ⩾ 2 and 𝑢 ⩾ 𝑐 + 1 be integers. Consider
the shifted sequence G = (𝐺𝑛)𝑛⩾0 where𝐺𝑛 = 𝐹𝑛+1. If𝐻𝑐−1 (G, 𝑢−1) is true, then𝐻𝑐 (F , 𝑢)
is true.

Proof. Indeed, the list of possible extensions for 𝐻𝑐−1 (G, 𝑢 − 1) is

𝐺𝑢/𝐺2𝑐−2

𝐺𝑢/𝐺2𝑐−3 𝐺𝑢+1/𝐺2𝑐−3

...
...

. . .

𝐺𝑢/𝐺𝑐 𝐺𝑢+1/𝐺𝑐 · · · 𝐺𝑢+𝑐−2/𝐺𝑐

=

𝐹𝑢+1/𝐹2𝑐−1

𝐹𝑢+1/𝐹2𝑐−2 𝐹𝑢+2/𝐹2𝑐−2

...
...

. . .

𝐹𝑢+1/𝐹𝑐+1 𝐹𝑢+2/𝐹𝑐+1 · · · 𝐹𝑢+𝑐−1/𝐹𝑐+1,
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which is a subset of the options for 𝐻𝑐 (F , 𝑢) (taking out the longest diagonal), which is

non-empty because 𝑐 ⩾ 2. □

Lemma 2.5. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝑐 ⩾ 2 and 𝑢 ⩾ 𝑐 + 1 be integers. Consider
the shifted sequence G = (𝐺𝑛)𝑛⩾0, where 𝐺𝑛 = 𝐹𝑛+1. If 𝐻𝑐−1 (G, 𝑢) is true, then 𝐻𝑐 (F , 𝑢)
is true.

Proof. Indeed, the list of possible extensions for 𝐻𝑐−1 (G, 𝑢) is

𝐺𝑢+1/𝐺2𝑐−2

𝐺𝑢+1/𝐺2𝑐−3 𝐺𝑢+2/𝐺2𝑐−3

...
...

. . .

𝐺𝑢+1/𝐺𝑐 𝐺𝑢+2/𝐺𝑐 · · · 𝐺𝑢+𝑐−1/𝐺𝑐

=

𝐹𝑢+2/𝐹2𝑐−1

𝐹𝑢+2/𝐹2𝑐−2 𝐹𝑢+3/𝐹2𝑐−2

...
...

. . .

𝐹𝑢+2/𝐹𝑐+1 𝐹𝑢+3/𝐹𝑐+1 · · · 𝐹𝑢+𝑐/𝐹𝑐+1,

which is a subset of the options for 𝐻𝑐 (F , 𝑢) (taking out the first column), which is

non-empty because 𝑐 ⩾ 2. □

Recall that, for a tower F thin from𝑚 = 1 and ℓ ⩾ 𝑚 + 1, we have

Φ(F , ℓ) =
{
𝐿 : 𝐹0 ⊆ 𝐿 ⊆ 𝐹ℓ+𝑚 and [𝐿 : 𝐹0] = 2

ℓ ⩾ 2
𝑚+1

and 𝐿 ≠ 𝐹ℓ
}
.

If some Φ(F , ℓ) is non-empty, we denote by ℓF the minimum of the set of ℓ such that

Φ(F , ℓ) is non-empty.

Lemma 2.6. Let 𝐹0 be a number field. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 .

Assume that the tower (𝐹𝑛)𝑛⩾1 is thin. If some Φ(F , ℓ) is non-empty, then 𝐹ℓF+1/𝐹2 is
Galois (namely, the property 𝐻1 (F , ℓF) is true).

Proof. Let ℓ = ℓF . Let 𝐿 ∈ Φ(F , ℓ). We first prove that the field 𝐿 ∩ 𝐹ℓ is not any of the

𝐹𝑛 for 1 ⩽ 𝑛 ⩽ ℓ . Assume the contrary. We then have 𝐹1 ⊆ 𝐹𝑛 = 𝐿 ∩ 𝐹ℓ ⊆ 𝐿. Therefore,

since the tower is thin from 𝑛 = 1, 𝐿 is one of the 𝐹 𝑗 and, since 𝐿 has degree 2
ℓ
, we have

𝐿 = 𝐹ℓ . This contradicts the fact that 𝐿 lies in Φ(F , ℓ).
In particular, 𝐿 ∩ 𝐹ℓ ≠ 𝐹ℓ is a proper subfield of 𝐹ℓ , hence it has degree 2

𝑘
for some

𝑘 < ℓ . If 𝑘 ⩾ 2, then 𝐿 ∩ 𝐹ℓ ∈ Φ(F , 𝑘) for 𝑘 < ℓ , contradicting the minimality of ℓ .

Hence we have 𝑘 ⩽ 1 and 𝐿 ∩ 𝐹ℓ is a subfield of 𝐹2 by Lemma 2.1. Also by Lemma 2.1,

𝐿 is a subfield of 𝐹ℓ+1. Since the extensions 𝐹ℓ+1/𝐿 and 𝐹ℓ+1/𝐹ℓ are quadratic, they are

Galois, hence 𝐹ℓ+1/𝐿 ∩ 𝐹ℓ is Galois, hence 𝐹ℓ+1/𝐹2 is Galois. □

Lemma 2.7. Let 𝐹0 be a number field. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 .

Assume that the tower (𝐹𝑛)𝑛⩾𝑚 is thin for some 𝑚 ⩾ 1. Consider the shifted sequence
G = (𝐺𝑛)𝑛⩾0, where 𝐺𝑛 = 𝐹𝑛+1. If for some ℓ ⩾ 𝑚 + 1 there is a field 𝐿 in Φ(F , ℓ) that
contains 𝐹1, then ℓG ⩾ 𝑚 exists and we have ℓF ⩽ ℓG + 1.

Proof. Note that G = (𝐺𝑛)𝑛⩾𝑚−1 is thin. Since ℓ − 1 ⩾ (𝑚 − 1) + 1, Φ(G, ℓ − 1) exists

and we have 𝐿 ∈ Φ(G, ℓ − 1), so in particular ℓG exists (and is ⩾ 𝑚) and Φ(G, ℓG) ≠ ∅
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by definition of ℓG . Since

Φ(G, ℓG) =
{
𝐿 : 𝐺0 ⊆ 𝐿 ⊆ 𝐺 and [𝐿 : 𝐺0] = 2

ℓG ⩾ 2
𝑚

and 𝐿 ≠ 𝐺ℓG

}
=
{
𝐿 : 𝐹1 ⊆ 𝐿 ⊆ 𝐺 and [𝐿 : 𝐹1] = 2

ℓG ⩾ 2
𝑚

and 𝐿 ≠ 𝐹ℓG+1

}
⊆
{
𝐿 : 𝐹0 ⊆ 𝐿 ⊆ 𝐹 and [𝐿 : 𝐹0] = 2

ℓG+1 ⩾ 2
𝑚+1

and 𝐿 ≠ 𝐹ℓG+1

}
= Φ(F , ℓG + 1),

where the last equality makes sense because ℓG + 1 ⩾ 𝑚 + 1, and, since Φ(G, ℓG) ≠ ∅,

we deduce that Φ(F , ℓG + 1) ≠ ∅ and we then have ℓF ⩽ ℓG + 1 by minimality of ℓF . □

Lemma 2.8. Let 𝐹0 be a number field. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower and 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 .

Assume that the tower (𝐹𝑛)𝑛⩾𝑚 is thin for some𝑚 ⩾ 1. If some Φ(F , ℓ) is non-empty, then
the property 𝐻𝑚 (F , ℓF) is true.

Proof. We prove the lemma by induction on 𝑚. It is true for 𝑚 = 1 by Lemma 2.6.

Assume that it is true up to 𝑚 − 1 for some 𝑚 ⩾ 2. Let F = (𝐹𝑛)𝑛⩾0 be a 2-tower

and 𝐹 =
⋃

𝑛⩾0
𝐹𝑛 such that the tower (𝐹𝑛)𝑛⩾𝑚 is thin and Φ(F , ℓ) is non-empty for

some ℓ (hence ℓF ⩾ 𝑚 + 1 and Φ(F , ℓF) is non-empty). Let 𝐿 ∈ Φ(F , ℓF). Consider

the tower G = (𝐺𝑛)𝑛⩾0 defined by 𝐺𝑛 = 𝐹𝑛+1. Since (𝐹𝑛)𝑛⩾𝑚 is thin, (𝐺𝑛)𝑛⩾𝑚−1 is thin.

Let 𝐺 =
⋃

𝑛⩾0
𝐺𝑛 . The proof will be done in two steps, depending whether or not 𝐿

contains 𝐹1.

Case 1: 𝐿 contains 𝐹1 (hence 𝐺0). On the one hand, we have ℓF ⩽ ℓG + 1 by Lemma 2.7.

On the other hand, we have [𝐿 : 𝐺0] = 2
ℓF−1 ⩾ 2

𝑚
and 𝐿 ≠ 𝐹ℓF = 𝐺ℓF−1, so we

have 𝐿 ∈ Φ(G, ℓF − 1), hence ℓG ⩽ ℓF − 1 by minimality of ℓG . So in that case, we

have ℓF = ℓG + 1. By hypothesis of induction applied to the tower G, the property

𝐻𝑚−1

(
G, (ℓG + 1) − 1

)
is true and, since 𝑚 ⩾ 2 and ℓG + 1 ⩾ 𝑚 + 1, the property

𝐻𝑚 (F , ℓG + 1) is true by Lemma 2.4, so we can conclude because ℓG + 1 = ℓF .

Case 2: 𝐿 does not contain 𝐹1. We have then

2
ℓF < [𝐿𝐹1 : 𝐹0] ⩽ [𝐿 : 𝐹0] [𝐹1 : 𝐹0] = 2

ℓF+1,

hence [𝐿𝐹1 : 𝐹0] = 2
ℓF+1

.

If 𝐿𝐹1 ≠ 𝐹ℓF+1, then by Lemma 2.7, since 𝐿𝐹1 lies in some Φ(F , ℓ) and contains 𝐹1,

we know that ℓG exists and ℓF ⩽ ℓG + 1. Since [𝐿𝐹1 : 𝐺0] = 2
ℓF ⩾ 2

𝑚+1 ⩾ 2
𝑚

and 𝐿𝐹1 ≠

𝐹ℓF+1 =𝐺ℓF , we have 𝐿𝐹1 ∈ Φ(G, ℓF), hence ℓG ⩽ ℓF by minimality of ℓG . For the sake

of contradiction, assume ℓG < ℓF . Since ℓF ⩽ ℓG + 1 we have ℓF = ℓG + 1. By definition

of ℓG , there exists a field 𝐿′ ⊆ 𝐺 which contains 𝐺0, such that [𝐿′ : 𝐺0] = 2
ℓG ⩾ 2

𝑚

and 𝐿′ ≠ 𝐺ℓG , namely, 𝐿′ ⊆ 𝐹 contains 𝐹1, [𝐿′ : 𝐹0] = 2
ℓG+1 ⩾ 2

𝑚+1
and 𝐿′ ≠ 𝐹ℓG+1. But

we have ℓF = ℓG + 1, hence 𝐿′ ⊆ 𝐹 contains 𝐹1, [𝐿′ : 𝐹1] = 2
ℓF ⩾ 2

𝑚+1
and 𝐿′ ≠ 𝐹ℓF .

Hence 𝐿′ ∈ Φ(F , ℓF), but this contradicts the fact that no field in Φ(F , ℓF) contains 𝐹1.

Hence we have ℓF = ℓG . By hypothesis of induction applied to the tower G, the property

𝐻𝑚−1 (G, ℓG) is true and, since𝑚 ⩾ 2 and ℓG = ℓF ⩾ 𝑚 + 1, the property 𝐻𝑚 (F , ℓG) is

true by Lemma 2.5, so we can conclude because ℓG = ℓF .

Otherwise, we have [𝐹ℓF+1 : 𝐿] = [𝐿𝐹1 : 𝐿] = 2 and, therefore, the extension

𝐹ℓF+1/(𝐿 ∩ 𝐹ℓF ) is Galois.
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If 𝐿 ∩ 𝐹ℓF = 𝐹𝑛 for some𝑚 ⩽ 𝑛 ⩽ ℓF , then 𝐹𝑚 ⊆ 𝐹𝑛 = 𝐿 ∩ 𝐹ℓF ⊆ 𝐿, hence 𝐿 = 𝐹ℓF
because the tower is thin from𝑚, but this contradicts our hypothesis on 𝐿. Therefore,

𝐿 ∩ 𝐹ℓF is different from 𝐹𝑛 for each 𝑛 ⩾ 𝑚, hence it is a proper subfield of 𝐹ℓF , hence it

has degree < 2
ℓF , hence it is a proper subfield of 𝐿 and, by minimality of ℓF , it has degree

at most 2
𝑚

. Therefore, 𝐿 ∩ 𝐹ℓF is a subfield of 𝐹2𝑚 by Lemma 2.1. Since 𝐹ℓF+1/(𝐿 ∩ 𝐹ℓF ) is

Galois, we deduce that 𝐹ℓF+1/𝐹2𝑚 is Galois and, since ℓF ⩾ 𝑚+1, the property𝐻𝑚 (F , ℓF)
is true. □

Under the hypothesis of Item 2 of Theorem 1.1, the property 𝐻𝑚 (F , ℓF) is true by

Lemma 2.8 and we have ℓF ⩾ 2𝑚 + 1 because each of Φ(F ,𝑚 + 1), . . . , Φ(F , 2𝑚) is

empty. Therefore, there exists 𝑛 ⩾ 2𝑚 such that 𝐹𝑛+1/𝐹𝑛 is Galois by Remark 2.3, which

concludes the proof of Item 2 of Theorem 1.1.

3 Examples
Let 𝑃 = 𝑋 4 + 𝑐𝑋 2 + 𝑑 be a polynomial over a field 𝐹 , with roots ±𝛼 and ±𝛽 . It is

irreducible over 𝐹 if and only if 𝛼2
and 𝛼𝛽 are not in 𝐹 (see [2, Thm. 2] and its proof) —

note that the irreducibility condition 𝛼𝛽 ∉ 𝐹 is equivalent to the condition that 𝑑 is not

a square in 𝐹 . The splitting field of 𝑃 has Galois group 𝑉4 if and only if 𝑑 is a square in

𝐹 , the cyclic group 𝐶4 if and only if 𝑑 (𝑐2 − 4𝑑) is a square in 𝐹 , and the dihedral group

with eight elements 𝐷4 otherwise, namely for neither 𝑑 nor 𝑑 (𝑐2 − 4𝑑) a square in 𝐹 .

See [2, Thm. 3].

We now give two examples where we can apply the main theorem. Both consider

2-towers (Q(𝛼𝑛))𝑛⩾0
that are nested in the sense that 𝛼2

𝑛+1
∈ Q(𝛼𝑛) \Q(𝛼𝑛−1). In a third

example, we give a nested 2-tower in which no finite portion of the tower can contain

all the quadratic extensions of Q which are in the tower, so this tower is not thin from

any level and the conclusion of Item 3 of Theorem 1.1 is false. Hence to be nested is not

the point in the previous two examples, but thinness.

3.1 Examples 1 and 2
We first prove a lemma.

Lemma 3.1. Let 𝐹 be a number field. Let 𝐿 = 𝐹 (
√
𝑏) be a quadratic extension of 𝐹 , with

𝑏 a cube and an algebraic integer in 𝐹 . There exist infinitely many 𝑎 ∈ 𝐹 such that the

splitting field of 𝐿(
√︁
𝑎 +

√
𝑏)/𝐹 is Galois with Galois group 𝐷4.

Proof. Note that the roots of the polynomial 𝑋 4 − 2𝑎𝑋 2 + 𝑎2 − 𝑏 are 𝛼 =
√︁
𝑎 +

√
𝑏,

𝛽 =
√︁
𝑎 −

√
𝑏, and their opposites. This polynomial is irreducible over 𝐹 if and only if 𝑏

and 𝑎2 −𝑏 are not squares in 𝐹 by [2, Thm. 2] and the observation made at the beginning

of this section. We know that 𝑏 is not a square by hypothesis. Furthermore, for the

group to be 𝐷4, we need (𝑎2 − 𝑏)𝑏 to be a non-square in 𝐹 .

Consider the elliptic curve 𝑌 3 − 𝑏 = 𝑋 2
. By Siegel’s theorem it has finitely many

integral points over 𝐹 , so it has only finitely many points of the form (𝑥, 𝑎2), even with
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𝑥 ∈ 𝐹 . So among the 𝑎 that are cubes, there can only be finitely many of them such that

𝑎2 − 𝑏 is a square.

Similarly, consider the elliptic curve 𝑌 3 − 𝑏2 = 𝑋 2
. Again this curve has finitely

many points of the form (𝑥, 3

√
𝑏𝑎2). So among the 𝑎 that are cubes, there can only be

finitely many of them such that 𝑏 (𝑎2 − 𝑏) is a square. □

Given integers 𝜈 and 𝑥0, write 𝑥𝑛 =
√
𝜈 + 𝑥𝑛−1 for 1 ⩽ 𝑛 ⩽ 6 (choose any root)

and 𝐾𝑛 = Q(𝑥𝑛). Thanks to the above Lemma, we can extend the tower to a 2-tower

(𝐾𝑛)𝑛⩾0 so that none of the extensions 𝐾𝑛+1/𝐾𝑛−1 is Galois for 𝑛 ⩾ 6. Indeed, we have

𝐾6 = 𝐾5 (
√
𝜈 + 𝑥5). If 𝜈 + 𝑥5 is a cube in 𝐾5, then we just apply the lemma to get a 𝐾7.

If 𝜈 + 𝑥5 is not a cube in 𝐾5, then we apply the lemma with 𝑏 = (𝜈 + 𝑥5)3
, noting that

𝐾6 = 𝐾5 (𝑏). Next steps are done similarly.

The following list of commands defines a function in SageMath [3] that takes as

entry 𝜈 and 𝑥0 and returns a list that says for each 𝐾𝑛+2/𝐾𝑛 whether it is or not Galois

and then the number of subfields of 𝐾2, 𝐾3 and 𝐾6 respectively. More specifically, with

the notation of the program below:

• The letter 𝑎 stands for a square root of 𝜈+𝑥0, so𝐾1 = Q(𝑎) = Q(√𝜈 + 𝑥0) = Q(𝑥1),
and 𝑅1 is the polynomial ring in the variable 𝑋1 over 𝐾1.

• The letter 𝑏 stands for a root of 𝑋 2

1
− 𝜈 − 𝑎, so 𝐾2 = 𝐾1 (𝑏) = 𝐾1 (𝑥2). Etc.

• Line 7, 𝐾6 is defined as a quartic extension of 𝐾4.

• Lines 8 and 9, we ask whether 𝐾2/Q is Galois, whether 𝐾3/𝐾1 is Galois, and so on

up to 𝐾6/𝐾4.

• Finally, on the last line, we ask for the length of the sequence of subfields (i.e. the

number of subfields) of 𝐾2, 𝐾3 and 𝐾6.

nu=3; x0=17;
K1.<a> = QuadraticField(nu+x0); R1.<X1>=K1[];
K2.<b> = K1.extension(X1ˆ2-nu-a); R2.<X2>=K2[];
K3.<c> = K1.extension(X1ˆ4-2*nu*X1ˆ2+nuˆ2-nu-a); R3.<X3>=K3[];
K4.<d> = K2.extension(X2ˆ4-2*nu*X2ˆ2+nuˆ2-nu-b); R4.<X4>=K4[];
K5.<e> = K3.extension(X3ˆ4-2*nu*X3ˆ2+nuˆ2-nu-c);
K6.<f> = K4.extension(X4ˆ4-2*nu*X4ˆ2+nuˆ2-nu-d);
[K2.is_galois_absolute(),K3.is_galois_relative(),K4.is_galois_relative(),
K5.is_galois_relative(),K6.is_galois_relative(),
len(K2.subfields()),len(K3.subfields()),len(K6.subfields())]

Example 1. For 𝜈 = 3 and 𝑥0 = 17, as above, the program returns [False, True, False,
False, False, 3, 6, 9] and the command K3.subfields() lists 2 subfields of degree 4,

so:

• Except for 𝐾3/𝐾1, none of the quartic extensions is Galois, so they are of 𝐷4 type.
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Q

𝐾1

𝐾2

𝐾3

𝐾4

𝐾 ′
2

𝐾 ′′
2

Q

𝐾1

𝐾2 = 𝐾22

𝐾3

𝐾4

𝐾23𝐾21

𝐾 ′
1

𝐾 ′′
1

Figure 1: Using Theorem 1.1 to determine the structure of subfields.

• 𝐾3/𝐾1 is Galois and 𝐾3 has 2 subfields of degree 4 over Q, hence 𝐾3/𝐾1 is of 𝑉4

type. In particular the tower (𝐾𝑛)𝑛⩾1 is not thin.

• The tower (𝐾𝑛)𝑛⩾2 is thin because all its quartic extensions are non-Galois by

construction, so in particular they are not of 𝑉4 type — see [4, Thm. 2.4].

• Since 𝐾6 has 9 subfields, there is no field in the tower with degree 2
3

or 2
4
, except

for 𝐾3 and 𝐾4. We conclude by Item 3 of Theorem 1.1 that the lattice of subfields

is as in Figure 1, left graph.

Example 2. The same program with 𝜈 = 9 and 𝑥0 = 2259 returns [False, True,
False, False, False, 3, 8, 11], so all the quartic extensions are of 𝐷4 type, except

for 𝐾3/𝐾1. Among the 8 subfields of 𝐾3, there are three of degree 2, one of which

being 𝐾1, and three of degree 4, one of which being 𝐾2, with minimal polynomials

𝑥4+8𝑥3−126𝑥2−1072𝑥+757, 𝑥4+32𝑥3+366𝑥2+1760𝑥+757 and𝑥4−16𝑥3−78𝑥2+632𝑥+757.

The following commands return [3, 3, 5], meaning that one of the three fields of degree

4 has 5 subfields and the other two have 3 subfields (𝐾2 is one of them).

x = polygen(ZZ, 'x');
K21.<a> = NumberField(xˆ4 + 8*xˆ3 - 126*xˆ2 - 1072*x + 757);
K22.<b> = NumberField(xˆ4 + 32*xˆ3 + 366*xˆ2 + 1760*x + 757);
K23.<c> = NumberField(xˆ4 - 16*xˆ3 - 78*xˆ2 + 632*x + 757);
[len(K21.subfields()), len(K22.subfields()), len(K23.subfields())]

Since 𝐾6 has 11 subfields, there is no field in the tower with degree 2
3

or 2
4
, except

for 𝐾3 and 𝐾4. We conclude by Theorem 1.1 that the lattice of subfields is as in Figure 1,

right graph.

We finish this section with the nested counter-example announced above.
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3.2 Example 3
Write 𝑝𝑛 for the 𝑛th

prime, 𝑝0 = 1, and 𝛼𝑛 =
√
𝑝0𝑝𝑛 + · · · + √

𝑝𝑛−1𝑝𝑛 . So we have

𝛼1 =
√

2, 𝛼2 =
√

3 +
√

6, 𝛼3 =
√

5 +
√

10 +
√

15, etc. Let 𝐾 =
⋃

𝑛 𝐾𝑛 , where 𝐾𝑛 = Q(𝛼𝑛).
Let 𝐿𝑛 = Q(√𝑝 𝑗𝑝𝑛 : 0 ⩽ 𝑗 ⩽ 𝑛 − 1). Observe that 𝐿𝑛/Q is an abelian extension of Q
of degree 2

𝑛
— indeed the union of the 𝐿𝑛 is the field Q(√𝑝𝑛 : 𝑛 ⩾ 1). Therefore, its

subextension 𝐾𝑛 is a Galois extension of Q. Let 𝜎 𝑗 be the automorphism of 𝐿𝑛 that sends√
𝑝 𝑗𝑝𝑛 to −√𝑝 𝑗𝑝𝑛 and fixes

√
𝑝𝑖𝑝𝑛 for every 𝑖 ≠ 𝑗 (in particular we have 𝜎 𝑗 (𝐾𝑛) = 𝐾𝑛

because 𝐾𝑛/Q is Galois). So 2

√
𝑝 𝑗𝑝𝑛 = 𝛼𝑛 − 𝜎 𝑗 (𝛼𝑛) ∈ 𝐾𝑛 . Hence 𝐾𝑛 = 𝐿𝑛 . Note that√

𝑝𝑖𝑝𝑛
√
𝑝 𝑗𝑝𝑛 = 𝑝𝑛

√
𝑝𝑖𝑝 𝑗 , so we have 𝐾𝑛−1 ⊆ 𝐾𝑛 . Moreover, we have

𝛼2

𝑛 = (√𝑝0𝑝𝑛 + · · · + √
𝑝𝑛−1𝑝𝑛)2

= 𝑝𝑛 (𝑝0 + · · · + 𝑝𝑛−1) + 2𝑝𝑛

∑︁
0⩽ 𝑗<𝑘⩽𝑛−1

√︁
𝑝 𝑗𝑝𝑘

= 𝑝𝑛 (𝑝0 + · · · + 𝑝𝑛−1) + 2𝑝𝑛 (𝛼𝑛−1 + 𝛼𝑛−2 + · · · + 𝛼1) ∈ 𝐾𝑛−1 .

We also deduce that 𝛼2

𝑛 is not in 𝐾𝑛−2: otherwise, the latter would give 𝛼𝑛−1 ∈ 𝐾𝑛−2,

which is a contradiction since, if that were false, we would have 𝐿𝑛−1 = 𝐾𝑛−1 = 𝐾𝑛−2 =

𝐿𝑛−2 yet 𝐿𝑛−1 and 𝐿𝑛−2 have different degree. We have therefore proved that the field

Q(
√

2,
√

3,
√

5 . . .)

is the union of a nested 2-tower and, for all natural numbers 𝑛,

√
𝑛 lies in it.
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