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Abstract

In this article we present an algorithm to find the roots of a quintic polyno-

mial with coefficients in F2
𝑚 , the finite field with 2

𝑚
elements, provided that the

polynomial has five distinct roots in this field. The algorithm uses algebraic transfor-

mations, called Tschirnhaus transformations, to convert a given quintic polynomial

into a normal form, namely 𝑥5 + 𝑥 + 𝑓 or 𝑥5 + 𝑓 . A table lookup is then applied

to read off the roots of a polynomial in normal form, after which the roots are

transformed back. The size of the lookup table is roughly 2
𝑚/60, implying that for

practical values of 𝑚 (such as 𝑚 = 8, 10, 12) the lookup table size is very modest

(namely 7, 17, 71). We also describe a polynomial 𝑃𝑚 (𝑇 ) whose roots correspond to

the values of 𝑓 ∈ F𝑞𝑚 such that the polynomial 𝑥𝑞+1 − 𝑥 − 𝑓 has 𝑞 + 1 distinct roots

in F𝑞𝑚 , generalizing a result of Berlekamp, Rumsey, and Solomon from 1966.

Keywords: Root finding, quintic polynomials over a finite field,

Tschirnhaus transformation.

1 Introduction
Having efficient algorithms to find the roots of low degree polynomials is very useful

when decoding generalized Reed–Solomon (GRS) codes defined over a finite field F𝑞 .

Several of the standard algorithms for decoding these codes, find a polynomial 𝑝 (𝑥)
whose roots indicate the position of the errors in the received word. More specifically,

a code word in a 𝑞-ary GRS code of length 𝑛 and dimension 𝑘 is of the form 𝑐 =

(𝑢1 𝑓 (𝛼1), . . . , 𝑢𝑛 𝑓 (𝛼𝑛)), where 𝑓 (𝑥) ∈ F𝑞 [𝑥] is a polynomial of degree at most 𝑘 − 1,

𝛼1, . . . , 𝛼𝑛 are distinct elements of F𝑞 and𝑢1, . . . , 𝑢𝑛 are nonzero (not necessarily distinct)

elements of F𝑞 . If 𝑟 = (𝑟1, . . . , 𝑟𝑛) = 𝑐 + 𝑒 is the received word and 𝑒 = (𝑒1, . . . , 𝑒𝑛) is

the error vector, fast decoders exist that recover 𝑐 from 𝑟 if we assume that at most

𝑡 :=𝑤𝐻 (𝑒) ⩽ ⌊(𝑛 −𝑘)/2⌋ errors have occurred. A very common procedure is to find the

error-locator polynomial, that is to say a polynomial 𝑝 (𝑥) ∈ F𝑞 [𝑥] of degree 𝑡 =𝑤𝐻 (𝑒)
such that 𝑝 (𝛼𝑖 ) = 0 if and only if 𝑒𝑖 ≠ 0. As a part of the decoding algorithm, the roots of
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this polynomial 𝑝 (𝑥) need to be found. Note that if the number of errors does not exceed

⌊(𝑛 −𝑘)/2⌋, then the roots of 𝑝 (𝑥) are distinct (no multiple roots) and all lie in the finite

field F𝑞 . Also note that this decoder is used for binary subfield subcodes of GRS codes,

including BCH codes. We are especially interested in the finite fields F2
𝑚 , because these

are the most important in practical applications. If ⌊(𝑛 − 𝑘)/2⌋ ⩽ 4, finding the roots of

𝑝 (𝑥) is done using explicit formulas for its roots. Indeed, for polynomials 𝑝 (𝑥) ∈ F[𝑥]
of degree up to 4 and coefficients in a field F, it is well known that there exist explicit

solution formulas for the roots of 𝑝 (𝑥) in terms of nested radicals of degree 2 and 3 in

the coefficients of 𝑝 (𝑥). Here a radical of an element 𝑢 of prime degree 𝑝 is defined to

be a solution to the equation 𝑥𝑝 = 𝑢 (resp. a solution to the equation 𝑥𝑝 − 𝑥 = 𝑢) if the

characteristic of F is not 𝑝 (resp. is equal to 𝑝). Such solution formulas have been the

mathematical basis of fast algorithms to compute the roots of polynomials 𝑝 (𝑥) ∈ F𝑞 [𝑥]
of degree up to 4, where F𝑞 is the finite field with 𝑞 elements. Algorithms using algebraic

solution formulas to find the roots of polynomials of degree up till 4 are for example

given in [2], [3], [6], [9], [11]. If the degree of the polynomial exceeds 4, no solution

formula for the roots of 𝑝 (𝑥) in terms of radicals exists in general and other methods

are used. In [2, 3] solution methods for polynomials of higher degree are proposed

by extending polynomials to affine polynomials, for which the roots can be found by

solving a linear system of equations. For polynomials of degree 5 this already requires

an extension to a polynomial of degree 16, where it may be inefficient to find the 5

correct roots. Other techniques in the literature involve searching through the elements

of F𝑞 in various ways, [8], [12].

In this article we aim to give an efficient method to find the roots of a quintic

polynomial with five distinct roots in F2
𝑚 using a lookup table of size roughly 2

𝑚/60.

This lookup table can be precomputed and indeed we assume this has been done. Our

approach presupposes that𝑚 is even, since it turns out that if𝑚 is odd, the size of the

lookup table is significantly larger. The main results of this article are the following.

First of all, we give a criterion that can be used to theoretically determine whether or not

a polynomial in F𝑞 [𝑥] of degree 𝑑 has 𝑑 distinct roots in F𝑞 . We will use this to describe

for which values of 𝑓 ∈ F𝑞𝑚 the polynomial 𝑥𝑞+1 − 𝑥 − 𝑓 ∈ F𝑞𝑚 [𝑥] has 𝑞 + 1 distinct

roots in F𝑞𝑚 . This extends results in [4] where the number of such polynomials was

found. Secondly, we show, 1) given a quintic polynomial 𝑝 (𝑥) ∈ F2
𝑚 [𝑥] with𝑚 even,

how to decide whether or not 𝑝 (𝑥) has 5 distinct roots in F2
𝑚 and 2) in the affirmative

case, find these 5 distinct roots. The amount of computations needed for part 1) is O(𝑚)
operations in F2

𝑚 . The table lookup in part 2) can be done in complexity O(𝑚) using a

binary search tree.

In the first part of the algorithm, a given quintic polynomial 𝑝 (𝑥) is transformed

into a polynomial of the form 𝑥5 + 𝑥 + 𝐹 , of the form 𝑥5 + 𝐹 , or the problem is reduced

to solving a quartic equation for which efficient algorithms already exist (see above).

The used transformations are called Tschirnhaus transformations in the literature. In

the second part of the algorithm, the roots of a quintic polynomial in normal form are

found using a lookup table and then transformed back to give the roots of the original

quintic polynomial 𝑝 (𝑥). If the transformed polynomial 𝑥5 + 𝑥 + 𝐹 does not occur in

the lookup table, the algorithm concludes that 𝑝 (𝑥) does not have all its roots in F2
𝑚
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or that it has multiple roots. We will show that this table has size at most ⌊2𝑚/60⌋ + 3.

For several practical values of𝑚, the size of the lookup table size is very modest. For

example for 𝑚 = 2, 4, 6, 8, 10, 12, 14, the table sizes are 0, 3, 1, 7, 17, 71, 273. This article

is an extended version of parts of a bachelor project carried out by the second author.

More precisely, several of the results in Section 3 of this article can be found in [14].

2 The Frobenius map and completely splitting poly-
nomials

Definition 2.1. Let F𝑞 be a finite field with 𝑞 elements and 𝑝 (𝑥) ∈ F𝑞 [𝑥] a polynomial of
degree 𝑑 > 0. We say that 𝑝 (𝑥) splits completely over F𝑞 , if 𝑝 (𝑥) has 𝑑 distinct roots in F𝑞 .

As mentioned before, our interest in completely splitting polynomials comes from

the decoding of GRS and BCH codes.

Definition 2.2. Let 𝑞 be a fixed prime power and 𝑝 (𝑥) ∈ F𝑞 [𝑥] be a non-zero poly-
nomial and write ⟨𝑝 (𝑥)⟩ for the ideal in F𝑞 [𝑥] generated by 𝑝 (𝑥). We denote by 𝐹𝑛 :

F𝑞 [𝑥]/⟨𝑝 (𝑥)⟩ → F𝑞 [𝑥]/⟨𝑝 (𝑥)⟩ the Frobenius map on the quotient ring F𝑞 [𝑥]/⟨𝑝 (𝑥)⟩
defined by 𝐹𝑛 (𝑎(𝑥) + ⟨𝑝 (𝑥)⟩) = 𝑎(𝑥)𝑞𝑛 + ⟨𝑝 (𝑥)⟩.

It is easy to verify that the Frobenius map is a ring homomorphism as well as a linear

map of F𝑞-vector spaces (hence it is a homomorphism of F𝑞-algebras). Berlekamp’s

factorization algorithm of polynomials with coefficients in F𝑞 is based on properties of

the Frobenius map. We will use it to study completely splitting polynomials.

Theorem 2.3. Let F𝑞 be the finite field with 𝑞 elements and 𝑝 (𝑥) ∈ F𝑞 [𝑥] a polynomial
of degree 𝑑 > 0. Then 𝑝 (𝑥) splits completely over F𝑞 if and only if the Frobenius map
𝐹1 : F𝑞 [𝑥]/⟨𝑝 (𝑥)⟩ → F𝑞 [𝑥]/⟨𝑝 (𝑥)⟩ is the identity map.

Proof. The polynomial 𝑝 (𝑥) splits completely over F𝑞 if and only if 𝑝 (𝑥) divides 𝑥𝑞 − 𝑥 .

This implies that 𝑝 (𝑥) splits completely over F𝑞 if and only if 𝐹1 (𝑥+⟨𝑝 (𝑥)⟩) = 𝑥+⟨𝑝 (𝑥)⟩.
Since the Frobenius operator 𝐹1 is completely determined by the image of 𝑥 + ⟨𝑝 (𝑋 )⟩,
this implies the theorem. □

This theorem is very useful to classify polynomials of a specific form that split

completely.

Example 2.4. Let 𝑝 (𝑥) = 𝑥𝑞 − 𝑥 − 𝑓 , with 𝑓 ∈ F𝑞𝑚 . Then 𝐹𝑚 (𝑥 + ⟨𝑝 (𝑥)⟩) = 𝑥 + 𝑓 + · · · +
𝑓 𝑞

𝑚−1 + ⟨𝑝 (𝑥)⟩. Hence Theorem 2.3 implies the well known result that the polynomial

𝑥𝑞 − 𝑥 − 𝑓 has 𝑞 distinct roots in F𝑞𝑚 if and only if Tr𝑚 (𝑓 ) = 0, where Tr𝑚 denotes the

trace map from F𝑞𝑚 to F𝑞 .

In the remainder of this section we study the splitting over F𝑞𝑚 of polynomials of

the form 𝑥𝑞+1 − 𝑥 − 𝑓 . For 𝑞 = 4, these are quintic polynomials that we will use later.

We start by stating a theorem which is a direct consequence of Lemma 4.4 from [4].

Theorem 2.5. Let 𝑞 be a prime power and 𝑚 a positive integer. Then there are exactly⌊𝑞𝑚−1

𝑞2−1

⌋
values of 𝑓 ∈ F𝑞𝑚\{0} for which 𝑥𝑞+1 − 𝑥 − 𝑓 splits completely over F𝑞𝑚 .
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Proof. Lemma 4.4 in [4] deals with polynomials of the form 𝑝 (𝑥) = 𝑥𝑞+1 −𝑏𝑥 +𝑏 over a

field 𝐹 = F𝑄𝑚 such that 𝐹 ∩ F𝑞 = F𝑄 for some 𝑄 and 𝑏 ∈ 𝐹\{0}. The lemma then states

that if 𝑁𝑄+1 denotes the number of 𝑏 ∈ 𝐹\{0} such that 𝑝 (𝑥) has exactly 𝑄 + 1 roots

in 𝐹 , then

𝑁𝑄+1 =

{
𝑄𝑚−1−1

𝑄2−1
if𝑚 is odd,

𝑄𝑚−1−𝑄
𝑄2−1

if𝑚 is even.

First of all, we choose 𝐹 = F𝑞𝑚 so that 𝑞 =𝑄. Second of all, note that introducing the

variables 𝑓 = −𝑏−1/𝑞
and 𝑦 = −𝑥 𝑓 , then 𝑥𝑞+1 −𝑏𝑥 +𝑏 = 0 if and only if 𝑦𝑞+1 −𝑦 − 𝑓 = 0.

Hence the theorem follows. □

This theorem has the following consequence.

Corollary 2.6. Suppose that𝑚 is even. There exist exactly
⌊

2
𝑚

60

⌋
nonzero values of 𝑓 ∈ F2

𝑚

such that the polynomial 𝑥5 + 𝑥 + 𝑓 splits completely over F2
𝑚 .

Proof. Choosing 𝑞 = 4 and ℓ = 𝑚/2, the theorem implies that there exist exactly⌊ 𝑞ℓ−1

𝑞2−1

⌋
=

⌊
2
𝑚

60

⌋
nonzero values of 𝑓 ∈ F

4
ℓ = F2

𝑚 such that the polynomial 𝑥5 + 𝑥 + 𝑓

splits completely over F2
𝑚 . □

Using Theorem 2.3, it is possible to describe the

⌊𝑞𝑚−1

𝑞2−1

⌋
values of 𝑓 from Theorem 2.5

as roots of a polynomial. We do this in the following theorem.

Theorem 2.7. Let 𝑞 be a prime power and 𝑚 a positive integer. Let 𝑃𝑚 (𝑇 ) ∈ F𝑞 [𝑇 ] be
the polynomial recursively defined by

𝑃1 (𝑇 ) := 1, 𝑃2 (𝑇 ) := 1, and 𝑃𝑛 (𝑇 ) := 𝑃𝑛−1 (𝑇 ) +𝑇𝑞𝑛−3

𝑃𝑛−2 (𝑇 ) for 𝑛 ⩾ 3.

Then deg 𝑃𝑚 (𝑇 ) =
⌊𝑞𝑚−1

𝑞2−1

⌋
and the polynomial 𝑥𝑞+1 − 𝑥 − 𝑓 ∈ F𝑞𝑚 [𝑥] splits completely

over F𝑞𝑚 if and only if 𝑃𝑚 (𝑓 ) = 0.

Proof. The statement about the degree of 𝑃𝑚 (𝑇 ) follows directly using induction on𝑚. It

is then clear that 𝑃𝑚 (𝑇 ) has at most

⌊𝑞𝑚−1

𝑞2−1

⌋
roots in F𝑞𝑚 . Therefore, if we can prove that

𝑥𝑞+1 − 𝑥 − 𝑓 ∈ F𝑞𝑚 [𝑥] splits completely over F𝑞𝑚 implies 𝑃𝑚 (𝑓 ) = 0, then we deduce

that the roots of 𝑃𝑚 (𝑇 ) exactly characterize the

⌊𝑞𝑚−1

𝑞2−1

⌋
values of 𝑓 from Theorem 2.5.

Now assume that the polynomial 𝑝 (𝑥) = 𝑥𝑞+1 − 𝑥 − 𝑓 ∈ F𝑞𝑚 [𝑥] splits completely

over F𝑞𝑚 . In particular, 𝑓 ≠ 0, since otherwise 𝑝 (𝑥) has only two roots 0 and 1. By

Theorem 2.3, we know that the Frobenius map 𝐹𝑚 : F𝑞𝑚 [𝑥]/⟨𝑝 (𝑥)⟩ → F𝑞𝑚 [𝑥]/⟨𝑝 (𝑥)⟩
is the identity map. In the quotient ring F𝑞𝑚 [𝑥]/⟨𝑝 (𝑥)⟩ the element 𝑥 + ⟨𝑝 (𝑥)⟩ is a unit

(since 𝑓 ≠ 0) and we can write 𝑥𝑞+⟨𝑝 (𝑥)⟩ = 𝑥+𝑓 +⟨𝑝 (𝑥 ) ⟩
𝑥+⟨𝑝 (𝑥 ) ⟩ . Now let us write 𝑡 := 𝑥+⟨𝑝 (𝑥)⟩,

then we have 𝑡𝑞 =
𝑡+𝑓
𝑡
. Hence the 𝑞th

power map on 𝑡 can be described as 𝜇 (𝑡), where 𝜇

is the linear fractional transformation corresponding to the matrix 𝐴 :=

(
1 𝑓

1 0

)
. For

𝑖 ⩾ 0, we denote by 𝐴 (𝑖 )
, the matrix obtained from 𝐴 by raising all of its coefficients
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to the 𝑞𝑖-th power. In particular 𝐴 (0) = 𝐴. Clearly 𝐹𝑚 (𝑡) = 𝑡𝑞
𝑚

= (𝜇 ◦ · · · ◦ 𝜇) (𝑡),
where 𝜇 ◦ · · · ◦ 𝜇 denotes the𝑚-fold composite of 𝜇 with itself. This implies that 𝐹𝑚 (𝑡)
can be described as the linear fractional transformation corresponding to the matrix

𝐴 (𝑚−1) · · ·𝐴 (0) . For 𝑛 ⩾ 1, write 𝐵𝑛 := 𝐴 (𝑛−1) · · ·𝐴 (0)
as well as 𝐵𝑛 =

(
𝑎𝑛 𝑐𝑛

𝑏𝑛 𝑑𝑛

)
. By

definition of 𝐵𝑛 , we have (
𝑎1 𝑐1

𝑏1 𝑑1

)
= 𝐴 =

(
1 𝑓

1 0

)
and, for 𝑛 ⩾ 2,(

𝑎𝑛 𝑐𝑛

𝑏𝑛 𝑑𝑛

)
= 𝐴 (𝑛−1) · 𝐵𝑛−1 =

(
1 𝑓 𝑞

𝑛−1

1 0

)
·
(
𝑎𝑛−1 𝑐𝑛−1

𝑏𝑛−1 𝑑𝑛−1

)
=

(
𝑎𝑛−1 + 𝑓 𝑞

𝑛−1

𝑏𝑛−1 𝑐𝑛−1 + 𝑓 𝑞
𝑛−1

𝑑𝑛−1

𝑎𝑛−1 𝑐𝑛−1

)
.

This immediately implies that the coefficients 𝑏𝑛 satisfy the recursion

𝑏1 := 1, 𝑏2 := 1, and 𝑏𝑛 := 𝑏𝑛−1 + 𝑓 𝑞
𝑛−2

𝑏𝑛−2 for 𝑛 ⩾ 3.

Using induction on 𝑛, it is easy to see that each 𝑏𝑛 is a 𝑞th
power when viewed as

polynomial in 𝑓 . Moreover, by definition of the polynomials 𝑃𝑛 (𝑇 ), we have for all

𝑛 ⩾ 1, 𝑃𝑛 (𝑓 )𝑞 = 𝑏𝑛 . If the polynomial 𝑝 (𝑥) = 𝑥𝑞+1 − 𝑥 − 𝑓 ∈ F𝑞𝑚 [𝑥] splits completely

over F𝑞𝑚 , then 𝐹𝑚 (𝑡) = 𝑡 , implying that 𝐵𝑚 is a multiple of the identity matrix. In

particular, we must have 𝑏𝑚 = 0. This implies that also 𝑃𝑚 (𝑓 ) = 𝑏
1/𝑞
𝑚 = 0, as desired. □

This theorem generalizes Theorem 4 in [2], where a similar result was obtained for

𝑞 = 2. The polynomials 𝑃𝑚 (𝑇 ) are very simple to compute. The first few are given in

the following table.

𝑚 𝑃𝑚 (𝑇 )
1 1

2 1

3 1 +𝑇

4 1 +𝑇 +𝑇𝑞

5 1 +𝑇 +𝑇𝑞 +𝑇𝑞2 +𝑇𝑞2+1

6 1 +𝑇 +𝑇𝑞 +𝑇𝑞2 +𝑇𝑞2+1 +𝑇𝑞3 +𝑇𝑞3+1 +𝑇𝑞3+𝑞

7
1 +𝑇 +𝑇𝑞 +𝑇𝑞2 +𝑇𝑞2+1 +𝑇𝑞3 +𝑇𝑞3+1 +𝑇𝑞3+𝑞

+𝑇𝑞4 +𝑇𝑞4+1 +𝑇𝑞4+𝑞 +𝑇𝑞4+𝑞2 +𝑇𝑞4+𝑞2+1

It is not hard to see with induction that for general𝑚, the polynomial 𝑃𝑚 (𝑇 ) is the

sum of all terms of the form 𝑇𝑞𝑖1+···+𝑞𝑖ℓ , where ℓ ⩾ 0, 0 ⩽ 𝑖1 < · · · < 𝑖ℓ ⩽ 𝑚 − 3, and
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where the tuple (𝑖1, . . . , 𝑖ℓ ) does not contain any consecutive integers. This generalizes

a similar description mentioned in [2] for 𝑞 = 2. The polynomials 𝑃𝑚 (𝑇 ) are somewhat

sparse: using induction one obtains that the number of terms occurring in 𝑃𝑚 (𝑇 ) is

equal to the𝑚th
Fibonacci number which is roughly equal to

(
1

2
+ 1

2

√
5

)𝑚
/
√

5. Finally

note that as a consequence of Theorems 2.3 and 2.5, we deduce that 𝑃𝑚 (𝑇 ) has simple

roots only, all of which lie in F𝑞𝑚 .
In the next section, we will study quintic polynomials with coefficients in F2

𝑚 ,

with𝑚 a positive integer. In particular, we will encounter quintic polynomials of the

form 𝑥5 + 𝑥 + 𝑓 with 𝑓 ∈ F2
𝑚 . If 𝑚 is even, we now know that there exactly ⌊2𝑚/60⌋

values of 𝑓 ∈ F2
𝑚 such that 𝑥5 + 𝑥 + 𝑓 splits completely over F2

𝑚 . We finish this section

by investigating what happens if𝑚 is odd.

Proposition 2.8. Let 𝑚 be an odd, positive integer and 𝑓 ∈ F2
𝑚 . Then the polynomial

𝑥5 + 𝑥 + 𝑓 does not split completely over F2
𝑚 .

Proof. Let us write𝑚 = 2𝑛+1. We use the same approach as in the proof of Theorem 2.7.

In particular, write 𝑝 (𝑥) := 𝑥5 + 𝑥 + 𝑓 and 𝑡 := 𝑥 + ⟨𝑝 (𝑥)⟩ ∈ F2
𝑚 [𝑥]/⟨𝑝 (𝑥)⟩. First of all,

note that for 𝑓 = 0, the polynomial 𝑝 (𝑥) does not split completely, so we may assume

𝑓 ≠ 0. Similarly as in the proof of Theorem 2.7, we obtain that

𝑡2
2𝑛

= 𝑡4
𝑛

=
𝑎𝑛𝑡 + 𝑐𝑛

𝑏𝑛𝑡 + 𝑑𝑛
, with

(
𝑎𝑛 𝑐𝑛

𝑏𝑛 𝑑𝑛

)
= 𝐵𝑛 =

(
1 𝑓 𝑞

𝑛−1

1 0

)
· · ·

(
1 𝑓

1 0

)
.

Hence

𝑡2
𝑚

=

(
𝑎𝑛𝑡 + 𝑐𝑛

𝑏𝑛𝑡 + 𝑑𝑛

)
2

=
𝑎2

𝑛𝑡
2 + 𝑐2

𝑛

𝑏2

𝑛𝑡
2 + 𝑑2

𝑛

.

By Theorem 2.3, 𝑝 (𝑥) splits over F2
𝑚 if and only if 𝑡2

𝑚

= 𝑡 . This would imply 𝑎2

𝑛𝑡
2 + 𝑐2

𝑛 =

𝑏2

𝑛𝑡
3 + 𝑑2

𝑛𝑡 or equivalently 𝑎2

𝑛𝑥
2 + 𝑐2

𝑛 + 𝑏2

𝑛𝑥
3 + 𝑑2

𝑛𝑥 ∈ ⟨𝑝 (𝑥)⟩. Since deg 𝑝 (𝑥) = 5 > 3,

this implies 𝑎𝑛 = 𝑏𝑛 = 𝑐𝑛 = 𝑑𝑛 = 0, which is impossible since 𝑎𝑛𝑑𝑛 − 𝑏𝑛𝑐𝑛 = det𝐵𝑛 =

𝑓 𝑞
𝑛−1+···+1 ≠ 0. □

3 Simplifying Tschirnhaus transformations
In this section we explain an algorithm finding the five roots of a quintic polynomial

𝑝 (𝑥) = 𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 ∈ F2
𝑚 [𝑥], assuming that 𝑚 is even and that 𝑝 (𝑥)

splits completely over F2
𝑚 . The algorithm will use a lookup table of size ⌊2𝑚/60⌋. If the

input polynomial is a quintic polynomial that does not split over F2
𝑚 , the procedure will

detect this, but not return any of its roots. Note that we may assume that𝑚 ⩾ 3, since

otherwise the field size is so small that no quintic polynomial can have five distinct

roots in it.

The first step of the algorithm puts the input polynomial in a preliminary normal

form, implying that we may assume that either 𝑏 = 𝑐 = 0 or that we already know a

root of 𝑝 (𝑥).
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Lemma 3.1. Let 𝑝 (𝑥) = 𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 ∈ F2
𝑚 [𝑥]. If 𝑐 = 0, let 𝑦 = 𝑥 + 𝑏.

Then 𝑝 (𝑥) = 0 if and only if

𝑦5 + 𝑑𝑦2 + (𝑒 + 𝑏4)𝑦 + (𝑏2𝑑 + 𝑏𝑒 + 𝑓 ) = 0.

If 𝑐 ≠ 0 and 𝑝 (𝑑/𝑐) ≠ 0 let 𝑦 = 1

𝑥+𝑑/𝑐 +
𝑝′ (𝑑/𝑐 )
𝑝 (𝑑/𝑐 ) . Then 𝑝 (𝑥) = 0 if and only if

𝑦5 + 𝑐

𝑝 (𝑑/𝑐)𝑦
2 + ©« 𝑝′ (𝑑/𝑐)4

𝑝 (𝑑/𝑐)4 + 𝑏+𝑑/𝑐
𝑝 (𝑑/𝑐 )

ª®¬𝑦 +
(
𝑐𝑝′ (𝑑/𝑐)3

𝑝 (𝑑/𝑐)3
+ (𝑏 + 𝑑/𝑐)𝑝′ (𝑑/𝑐)

𝑝 (𝑑/𝑐)2
+ 1

)
= 0.

Proof. Follows by direct computation. □

If 𝑝 (𝑥) = 𝑥5 + 𝑓 , then 𝑦 = 𝑥 in Lemma 3.1 and the resulting equation in 𝑦 is just

𝑦5 + 𝑓 . To deal with this type of equation, one could use one of the already known

algorithms for computing fifth roots (e.g. [1],[7]). For some situations this might be

preferable, but we will show how to deal with these polynomials without having to

resort to these algorithms, increasing the size of the lookup table with at most three

entries. Note that if 5 divides 2
𝑚 − 1, which happens if and only if 𝑚 is a multiple

of 4, many splitting polynomials of the form 𝑥5 + 𝑓 exist, namely (2𝑚 − 1)/5, while

we are aiming for a lookup table of size ⌊2𝑚/60⌋ . We use a simple trick to deal with

polynomials of this form.

Lemma 3.2. Let 𝑝 (𝑥) = 𝑥5 + 𝑓 and suppose that 𝑓 ≠ 1. If 𝑦 = 𝑥/(𝑥 + 1) + 𝑓 /(𝑓 + 1),
then 𝑝 (𝑥) = 0 if and only if

𝑦5 + 𝑓 (𝑓 2 + 𝑓 + 1)
(𝑓 + 1)4

𝑦 + 𝑓 2

(𝑓 + 1)2
= 0.

Proof. This follows from direct computation. □

If 𝑓 3 ≠ 1, the resulting polynomial is of the form 𝑋 5 +𝐸𝑋 + 𝐹 with 𝐸 ≠ 0. Lemma 3.1

does not cover the case where 𝑐 ≠ 0 and 𝑝 (𝑑/𝑐) = 0, but of course in this case, 𝑝 (𝑥) has

the root 𝑑/𝑐 . After factoring out the term 𝑥 + 𝑑/𝑐 , one is left with a quartic polynomial,

for which fast root finding techniques are available already in the literature (see the

references given in the introduction). In the remaining cases Lemma 3.1 implies that

𝑝 (𝑥) can be transformed in a polynomial of the form 𝑦5 + 𝐷𝑦2 + 𝐸𝑦 + 𝐹 . If 𝐷 = 0, then

we either assume that 𝑝 (𝑥) = 𝑥5 + 𝛼 , with 𝛼3 = 1, or that 𝐸 ≠ 0. The complexity of

computing the transformed polynomial is is a constant number of operations and in

particular does not depend on𝑚.

Lemma 3.3. Let 𝑝 (𝑥) = 𝑥5 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 ∈ F2
𝑚 [𝑥]. If 𝑒 ≠ 0, let 𝑦 = 𝑒−1/4𝑥 . Then

𝑝 (𝑥) = 0 if and only if
𝑦5 + 𝑑𝑒−3/4𝑦2 + 𝑦 + 𝑒−5/4 𝑓 = 0.

Proof. Follows by direct computation. □
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If 𝑒 ≠ 0, a fourth root of 𝑒 needs to be computed. Since we are working in F2
𝑚 , such a

root is uniquely determined and given by 𝑒1/4 = 𝑒2
𝑚−2

. Computing 𝑒1/4
can therefore be

done in at most𝑚− 2 operations using repeated squaring. Faster is to use a normal basis

to represent the elements of F2
𝑚 over F2 . In this case computing 𝑒1/4

has a constant cost.

However, for simplicity we will not use this observation. Yet another possibility is to use

fast modular composition of functions of the form ℎ(𝑡) = 𝑧2
𝑡

. Since ℎ(ℎ(𝑡)) = 𝑧2
2𝑡

, this

approach gives rise to an algorithm capable of computing 𝑒1/4
in complexity O(log(𝑚)).

Combining the above lemmas, we obtain the following.

Proposition 3.4. Let 𝑝 (𝑥) = 𝑥5+𝑏𝑥4+𝑐𝑥3+𝑑𝑥2+𝑒𝑥+ 𝑓 ∈ F2
𝑚 [𝑥] and assume that 𝑝 (𝑥)

splits completely over F2
𝑚 . We can reduce the problem of finding all 5 roots of 𝑝 (𝑥) using

O(𝑚) operations in F2
𝑚 to the problem of finding all roots of a polynomial 𝑞(𝑥) ∈ F2

𝑚 [𝑥]
that splits completely over F2

𝑚 and additionally satisfies one of the following conditions:

(i) deg𝑞(𝑥) = 4, or

(ii) 𝑞(𝑥) = 𝑥5 + 𝛼, with 𝛼3 = 1, or

(iii) 𝑞(𝑥) = 𝑥5 + 𝐷𝑥2 + 𝑥 + 𝐹 for certain 𝐷, 𝐹 ∈ F2
𝑚 , or

(iv) 𝑞(𝑥) = 𝑥5 + 𝐷𝑥2 + 𝐹 for certain 𝐷, 𝐹 ∈ F2
𝑚 , 𝐷 ≠ 0.

In case (i) an algorithm to find the roots of a quartic polynomial will need to be used

as for example given in [2] or [6]. These algorithms use at most O(𝑚) operations in F2
𝑚 .

In case (ii), the polynomial 𝑞(𝑥) splits completely over F2
𝑚 if and only if 𝑚 is a

multiple of 4. Indeed if 𝑞(𝑥) splits, F2
𝑚 contains all fifth roots of unity, that is 5 divides

2
𝑚 − 1. This implies that𝑚 is a multiple of 4. Conversely, if𝑚 is a multiple of 4, then 15

divides 2
𝑚 − 1. Hence any 𝛼 satisfying 𝛼3 = 1 is a fifth power in F2

𝑚 and F2
𝑚 contains

all fifth roots of unity. This implies that the polynomials 𝑝 (𝑥) split completely over F2
𝑚 .

Hence case (ii) only occurs if𝑚 is a multiple of 4.

In case (iii), the case that 𝐷 = 𝐹 cannot occur, since otherwise 𝑞(𝑥) has 1 as multiple

root. The case that 𝐹 = 0 can also easily be dealt with, since in that case 𝑞(𝑥) has root 0

and the remaining roots are the roots of the quartic polynomial 𝑥4 + 𝐷𝑥 + 1. Therefore

we may assume from now on that in case (iii) 𝐹 ≠ 0 and 𝐷 ≠ 𝐹 .

Similarly, in case (iv), 𝐹 ≠ 0, since otherwise 0 is a multiple root. Therefore we

assume from now on that in case (iv) 𝐷𝐹 ≠ 0.

The polynomials in cases (iii) and (iv) above, still contain two parameters 𝐷 and 𝐹 ,

but it turns out that if 𝑚 is even, algebraic transformations called Tschirnhaus trans-

formations, can be used to eliminate a further parameter. Such transformations were

introduced in 1683 [13] by E.W. von Tschirnhaus (see [10] for a translation into English).

We give a brief overview of this method applied to quintic polynomials. If 𝑝 (𝑥) ∈ F2
𝑚 [𝑥]

is a monic, quintic polynomial with roots 𝑥1, . . . , 𝑥5, then the coefficients of 𝑝 (𝑥) are

the elementary symmetric polynomials in 𝑥1, . . . , 𝑥5. A Tschirnhaus transformation

of 𝑝 (𝑥) is obtained by finding the monic, quintic polynomial 𝑞(𝑦) ∈ F2
𝑚 [𝑦] whose

roots are the five quantities 𝑦1, . . . , 𝑦5, where 𝑦𝑖 := 𝑥4

𝑖 + 𝑔3𝑥
3

𝑖 + 𝑔2𝑥
2

𝑖 + 𝑔1𝑥𝑖 + 𝑔0 and

𝑔0, . . . , 𝑔4 are chosen elements from F2
𝑚 . The idea is to try to choose 𝑔0, . . . , 𝑔4 in such a

way that the polynomial 𝑞(𝑦) has less nonzero coefficients than 𝑝 (𝑥). The coefficients
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of 𝑞(𝑦) are the elementary symmetric polynomials in 𝑦1, . . . , 𝑦5 and hence symmetric

polynomials in 𝑥1, . . . , 𝑥5. This means that the coefficients of 𝑞(𝑦) can be expressed in

the coefficients of 𝑝 (𝑥), which can be done easily for example using a computer. We

say that 𝑞(𝑦) is the Tschirnhaus transform of 𝑝 (𝑥) with respect to the transformation

𝑦 = 𝑥4 + 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0. If the roots of 𝑞(𝑦) are known, the roots of 𝑝 (𝑥) can be

computed. One straightforward, but somewhat naive, approach is to use the relation

𝑦 = 𝑥4 +𝑔3𝑥
3 +𝑔2𝑥

2 +𝑔1𝑥 +𝑔0 and to solve a quartic equation for each root of 𝑞(𝑦), but

usually it is possible to use the equations 𝑝 (𝑥) = 0 and 𝑦 = 𝑥4 + 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0

to express 𝑥 as a linear combination of powers of 𝑦. In these cases, we can find the

inverse Tschirnhaus transformation. Then the roots of 𝑝 (𝑥) can directly be computed

from those of 𝑞(𝑦).
We now indicate how to choose 𝑔0, . . . , 𝑔3 for the families of quintic polynomials

from Proposition 3.4 in such a way that the resulting Tschirnhaus transform is of the

form 𝑦5 + 𝑦 + 𝐹 or 𝑦5 + 𝐹 .

Proposition 3.5. Let 𝑝 (𝑥) = 𝑥5 +𝑑𝑥2 +𝑥 + 𝑓 ∈ F2
𝑚 and assume 𝑑 𝑓 (𝑑 + 𝑓 ) ≠ 0. Suppose

that 𝑔0, . . . , 𝑔3 are chosen such that

𝑔2 =
𝑓

𝑑
, 𝑔2

3
+ (𝑑 + 𝑓 )2

𝑑3
𝑔3 +

𝑓

𝑑
= 0, 𝑔0 = 𝑑𝑔3, 𝑔1 = 𝑑 + 𝑔3

𝑓

𝑑
,

then the Tschirnhaus transform of 𝑝 (𝑥) with respect to 𝑦 = 𝑥4 + 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0 is
given by 𝑞(𝑦) = 𝑦5 + 𝐸𝑦 + 𝐹, with

𝐸 =
(𝑑 + 𝑓 )8

𝑑13

(
(𝑑3 𝑓 + 𝑑2 + 𝑓 2)𝑔3 + 𝑑2 (𝑑3 + 𝑓 )

)
and

𝐹 =
(𝑑 + 𝑓 )10

𝑑17

(
(𝑑5 𝑓 + 𝑑4 + 𝑓 4)𝑔3 + (𝑑 + 𝑓 )2𝑑2 𝑓

)
.

Moreover, the inverse Tschirnhaus transformation is given by

𝑥 =
𝑑6 (𝑑 + 𝑓 )2𝑔3 + 𝑑3 (𝑑5 𝑓 + 𝑑4 + 𝑓 4)

𝑓 2 (𝑑 + 𝑓 )6
𝑦3 + 𝑑4𝑔3 + 𝑑 (𝑑3 𝑓 + 𝑑2 + 𝑓 2)

𝑓 2 (𝑑 + 𝑓 )2
𝑦.

Proof. Let us denote by 𝑞(𝑦) = 𝑦5 + 𝛽𝑦4 +𝛾𝑦3 + 𝛿𝑦2 + 𝜀𝑦 + 𝜁 the Tschirnhaus transform

of 𝑝 (𝑥) with respect to the transformation 𝑦 = 𝑥4 +𝑔3𝑥
3 +𝑔2𝑥

2 +𝑔1𝑥 +𝑔0. A direct, but

lengthy, computation shows that

𝛽 = 𝑔3𝑑 + 𝑔0 and 𝛾 = 𝑑2𝑔2

3
+ (𝑑 + 𝑓 𝑔2)𝑔3 + 𝑑2𝑔2 + (𝑑𝑔2 + 𝑓 )𝑔1 .

Choosing 𝑔2, 𝑔3, 𝑔0 such that 𝑔2 = 𝑓 /𝑑 , 𝑑2𝑔2

3
+ (𝑑 + 𝑓 𝑔2)𝑔3 + 𝑑2𝑔2 = 0 and 𝑔0 = 𝑑𝑔3, we

make sure that 𝛽 = 𝛾 = 0. Moreover, with these choices, we obtain that:

𝛿 = (𝑑𝑔1 + 𝑑2 + 𝑓 𝑔3) (𝑔2

1
+ 𝑔2

3
+ (𝑑5 + 𝑑2 𝑓 + 𝑓 3)/𝑑3).

Hence the first part of the lemma follows. The expressions for 𝐸, 𝐹 and the inverse

Tschirnhaus transformation, can easily be verified using a computer. Indeed consider
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the ideal ⟨𝑥5 +𝑑𝑥2 + 𝑥 + 𝑓 , 𝑦 + 𝑥4 +𝑔3𝑥
3 +𝑔2𝑥

2 +𝑔1𝑥 +𝑔0⟩ ⊂ F2
𝑚 (𝑑, 𝑓 , 𝑔3) [𝑥,𝑦], where

𝑑 and 𝑓 are considered independent transcendental elements over F2
𝑚 and 𝑔3 satisfies

the quadratic equation given in the proposition. Computing a Gröbner basis of this

ideal with respect to the lexicographic order ≺ such that 𝑦 ≺ 𝑥 , one obtains precisely

the polynomial 𝑦5 + 𝐸𝑦 + 𝐹 and the inverse Tschirnhaus transformation. □

Similarly one obtains the following.

Proposition 3.6. Let 𝑝 (𝑥) = 𝑥5 + 𝑑𝑥2 + 𝑓 ∈ F2
𝑚 and assume 𝑑 𝑓 ≠ 0. Suppose that

𝑔0, . . . , 𝑔3 are chosen such that

𝑔2 =
𝑓

𝑑
, 𝑔2

3
+ 𝑓 2

𝑑3
𝑔3 +

𝑓

𝑑
= 0, 𝑔0 = 𝑑𝑔3, 𝑔1 = 𝑑 + 𝑔3

𝑓

𝑑
,

then the Tschirnhaus transform of 𝑝 (𝑥) with respect to 𝑦 = 𝑥4 + 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0 is
given by 𝑞(𝑦) = 𝑦5 + 𝐸𝑦 + 𝐹, with

𝐸 =
𝑓 8

𝑑10

(
𝑓 𝑔3 + 𝑑2

)
and

𝐹 =
𝑓 11

𝑑17

(
(𝑑5 + 𝑓 3)𝑔3 + 𝑑2 𝑓 2

)
.

Moreover, the inverse Tschirnhaus transformation is given by

𝑥 =
𝑑6 𝑓 𝑔3 + 𝑑3 (𝑑5 + 𝑓 3)

𝑓 7
𝑦3 + 𝑑4

𝑓 3
𝑦.

Proof. The proof is very similar to that of Proposition 3.5. Let 𝑞(𝑦) = 𝑦5 + 𝛽𝑦4 + 𝛾𝑦3 +
𝛿𝑦2 + 𝜀𝑦 + 𝜁 the Tschirnhaus transform of 𝑝 (𝑥) with respect to the transformation

𝑦 = 𝑥4 + 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0. Then

𝛽 = 𝑔3𝑑 + 𝑔0 and 𝛾 = 𝑑2𝑔2

3
+ 𝑓 𝑔2𝑔3 + 𝑑2𝑔2 + (𝑑𝑔2 + 𝑓 )𝑔1 .

Choosing 𝑔2, 𝑔3, 𝑔0 such that 𝑔2 = 𝑓 /𝑑 , 𝑑2𝑔2

3
+ 𝑓 𝑔2𝑔3 + 𝑑2𝑔2 = 0 and 𝑔0 = 𝑑𝑔3, we make

sure that 𝛽 = 𝛾 = 0. Moreover, we obtain that:

𝛿 = (𝑑𝑔1 + 𝑑2 + 𝑓 𝑔3) (𝑔2

1
+ (𝑑5 + 𝑓 3)/𝑑3).

Hence the first part of the lemma follows. The expressions for 𝐸, 𝐹 and the inverse

Tschirnhaus transformation, can easily be obtained performing a Gröbner basis compu-

tation. □

The choice of especially 𝑔2 in Propositions 3.5 and 3.6 is a clever trick used in the

classical study of quintic polynomials over the complex numbers, e.g. [5]. The point is

that because of this choice, the expression for 𝛾 in the proof of the propositions, reduces

to a polynomial in the variable 𝑔3 only, giving the key to the choice of the other variables

in the Tschirnhaus transformation. However, we cannot be sure that the two possible

values of 𝑔3 lie in F2
𝑚 . Fortunately, this turns out to be the case if we assume both that𝑚

is even and that the polynomial 𝑝 (𝑥) splits completely over F2
𝑚 .
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Lemma 3.7. Let 𝑑, 𝑓 ∈ F2
𝑚\{0} and suppose that 𝑚 is even. If the polynomial 𝑥5 +

𝑑𝑥2 + 𝑥 + 𝑓 splits completely in F2
𝑚 , then the equation 𝑔2

3
+ (𝑑+𝑓 )2

𝑑3
𝑔3 + 𝑓

𝑑
= 0 has two

solutions in F2
𝑚 . If the polynomial 𝑥5 +𝑑𝑥2 + 𝑓 splits completely in F2

𝑚 , then the equation
𝑔2

3
+ 𝑓 2

𝑑3
𝑔3 + 𝑓

𝑑
= 0 has two distinct solutions in F2

𝑚 .

We postpone the proof of this lemma to the appendix. Now that we know that the

two possibilities for𝑔3 are in F2
𝑚 , we have a choice of which𝑔3 to pick. In Proposition 3.5,

the sum of the two possibilities for 𝑔3 equals (𝑑 + 𝑓 )2/𝑑3
, in Proposition 3.6 𝑓 2/𝑑3

. It is

then easy to see that in either proposition, we can always choose 𝑔3 such that in the

resulting transformed equation 𝑦5 + 𝐸𝑦 + 𝐹 , the coefficient 𝐸 is not zero. Using a similar

scaling trick as in Lemma 3.3, we then obtain the following.

Theorem 3.8. Let 𝑝 (𝑥) = 𝑥5 + 𝑑𝑥2 + 𝑥 + 𝑓 or 𝑝 (𝑥) = 𝑥5 + 𝑑𝑥2 + 𝑓 be a polynomial
that splits completely in F2

𝑚 and assume that 𝑑 𝑓 ≠ 0 and𝑚 is even. Then there exists an
invertible Tschirnhaus transformation such that the transformed polynomial is of the form
𝑦5 + 𝑦 + 𝐹 for some 𝐹 ∈ F2

𝑚 .

Once the transformed polynomial of the form 𝑦5 + 𝑦 + 𝐹 is obtained, a simple table

lookup in the table of all completely splitting polynomials of the form 𝑥5 + 𝑥 + 𝑓 allows

one to determine whether or not 𝑥5 + 𝑥 + 𝐹 occurs in the table. If yes, the roots of the

transformed polynomial 𝑥5+𝑥 +𝐹 can be read off and using the inverse transformations,

the roots of 𝑝 (𝑥) can be computed. If 𝑥5 + 𝑥 + 𝐹 does not occur in the table, the original

polynomial 𝑝 (𝑥) did not split completely. Using a binary search tree, the table lookup

can be done in complexity O(𝑚), since we have seen in Corollary 2.6 that the table size

is ⌊2𝑚/60⌋, since there are precisely that many completely splitting polynomials of the

form 𝑥5 + 𝑥 + 𝑓 over F2
𝑚 .

Remark 3.9. The assumption the 𝑚 is even in the above theorem is essential. Indeed,

assume that 𝑚 is odd, 𝑝 (𝑥) splits completely, and 𝑔3 could be chosen from F2
𝑚 . Then

Theorem 3.8 would imply that there exists a polynomial of the form 𝑥5 +𝑥 + 𝐹 ∈ F2
𝑚 [𝑥]

that splits completely over F2
𝑚 . This is a contradiction with Proposition 2.8. If 𝑚 is

odd, it is clear that 𝑔3 can be chosen from the field F
2

2𝑚 , yielding 𝑥5 + 𝑥 + 𝐹 ∈ F
2

2𝑚 [𝑥] .
However, there are ⌊22𝑚/60⌋ completely splitting polynomials of this form. Experiments

for small 𝑚 (see [14]) suggest that roughly half of these are obtained by transforming

totally splitting polynomials 𝑝 (𝑥) over F2
𝑚 . Therefore for odd𝑚, the above approach

still works to some extent, but one is forced to work over the larger field F
2

2𝑚 when

transforming the polynomial and the roots, and the size of the lookup table seems to

become roughly 2
2𝑚/120, which is much larger than what is needed for even𝑚.

Example 3.10. To illustrate the algorithm described above, we give a small example for

the field F
2

8 . We write the nonzero elements of F
2

8 as a power of a primitive element 𝑎

satisfying 𝑎8 = 𝑎4 +𝑎3 +𝑎2 + 1. In this case the lookup table contains seven polynomials.

Three of them are of the form 𝑥5 + 𝑓 with 𝑓 3 = 1, while the remaining four are of the

form 𝑥5 + 𝑥 + 𝑓 with 𝑓 4 + 𝑓 + 1 = 0 (see Theorem 2.7).
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polynomial roots

𝑥5 + 1 1, 𝑎51, 𝑎102, 𝑎153, 𝑎204

𝑥5 + 𝑎85 𝑎17, 𝑎68, 𝑎119, 𝑎170, 𝑎221

𝑥5 + 𝑎170 𝑎34, 𝑎85, 𝑎136, 𝑎187, 𝑎238

𝑥5 + 𝑥 + 𝑎17 𝑎43, 𝑎136, 𝑎175, 𝑎178, 𝑎250

𝑥5 + 𝑥 + 𝑎34 𝑎17, 𝑎86, 𝑎95, 𝑎101, 𝑎245

𝑥5 + 𝑥 + 𝑎68 𝑎34, 𝑎172, 𝑎190, 𝑎202, 𝑎235

𝑥5 + 𝑥 + 𝑎136 𝑎68, 𝑎89, 𝑎125, 𝑎149, 𝑎215

Now as an example, consider the polynomial

𝑝 (𝑥) := 𝑥5 + 𝑎14𝑥4 + 𝑎91𝑥3 + 𝑎202𝑥2 + 𝑎5𝑥 + 𝑎89.

Lemma 3.1 applies with the case that 𝑐 ≠ 0 and 𝑝 (𝑑/𝑐) ≠ 0. Therefore we first use the

substitution 𝑦 = 1

𝑥+𝑎111
+𝑎130

(with inverse substitution 𝑥 = 1

𝑦+𝑎130
+𝑎111 .) Then 𝑝 (𝑥) = 0

if and only if

𝑝1 (𝑦) := 𝑦5 + 𝑎145𝑦2 + 𝑎115𝑦 + 𝑎107 = 0.

Therefore we now continue the algorithm with the polynomial 𝑝1 (𝑥). Applying the

transformation𝑦 = 𝑎35𝑥 from Lemma 3.3 to 𝑝1 (𝑥), we obtain the transformed polynomial

𝑝2 (𝑦) := 𝑦5 + 𝑎250𝑦2 + 𝑦 + 𝑎27.

We continue the algorithm with 𝑝2 (𝑥).
At this point the Tschirnhaus transformation begins to play a role. Applying Propo-

sition 3.5 to 𝑝2 (𝑥), we obtain that 𝑔2 = 𝑎32
and that 𝑔3 needs to satisfy 𝑔2

3
+𝑎75𝑔3+𝑎32 = 0.

As predicted by Lemma 3.7, this equation has two solutions in F
2

8 which turn out to

be 𝑎47
and 𝑎240 . We choose 𝑔3 = 𝑎47. Then we obtain 𝑔0 = 𝑎42

and 𝑔1 = 𝑎35. Hence the

Tschirnhaus transformation that we need to use is 𝑦 = 𝑥4 + 𝑎47𝑥3 + 𝑎32𝑥2 + 𝑎35𝑥 + 𝑎42
.

The inverse Tschirnhaus transformation is 𝑥 = 𝑎201𝑦3 + 𝑎126𝑦 and the transformed

polynomial is

𝑝3 (𝑦) := 𝑦5 + 𝑎135𝑦 + 𝑎241 .

Finally applying Lemma 3.3 again to 𝑝3 (𝑥) with the transformation 𝑦 = 𝑎30𝑥 , we obtain

𝑝4 (𝑦) := 𝑦5 + 𝑦 + 𝑎136,

which is the seventh polynomial on the lookup table.

Now we simply calculate the roots of 𝑝 (𝑥) starting with those of 𝑝4 (𝑥) from the

lookup table and then working our way backwards using the inverse transformations:
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polynomial transformation roots

𝑝4 (𝑥) = 𝑥5 + 𝑥 + 𝑎136 𝑎68, 𝑎89, 𝑎125, 𝑎149, 𝑎215

𝑝3 (𝑥) = 𝑥5 + 𝑎135𝑥 + 𝑎241 𝑥 → 𝑎225𝑥 𝑎38, 𝑎59, 𝑎95, 𝑎119, 𝑎185

𝑝2 (𝑥) = 𝑥5 + 𝑎250𝑥2 + 𝑥 + 𝑎27 𝑥 → 𝑎201𝑥3 + 𝑎126𝑥 𝑎87, 𝑎213, 𝑎242, 𝑎97, 𝑎153

𝑝1 (𝑥) = 𝑥5 + 𝑎145𝑥2 + 𝑎115𝑥 + 𝑎107 𝑥 → 𝑎220𝑥 𝑎52, 𝑎178, 𝑎207, 𝑎62, 𝑎118

𝑝 (𝑥) = 𝑥5 + 𝑎14𝑥4 + 𝑎91𝑥3 + 𝑎202𝑥2

+𝑎5𝑥 + 𝑎89
𝑥 → 1

𝑥+𝑎130
+ 𝑎111

1, 𝑎, 𝑎13, 𝑎18, 𝑎57

Hence we conclude that 𝑝 (𝑥) splits completely and has roots 1, 𝑎, 𝑎13, 𝑎18, 𝑎57.

Remark 3.11. It is possible to reduce the size of the lookup table somewhat more using

the Frobenius map. More precisely, if 𝑥5 + 𝑥 + 𝑓 is a polynomial in the lookup table and

𝑓 ∉ F2, then 𝑥5 +𝑥 + 𝑓 2
is also in the table and the roots can easily be obtained by taking

the squares of the roots of the first polynomial. A similar remark applies to polynomials

in the table of the form 𝑥5 + 𝑓 . Hence the table can be compressed somewhat by only

choosing representatives of orbits arising under the action of the Frobenius map. In the

previous example, one can in this way reduce the size of the lookup table from seven to

three. Indeed, the polynomials 𝑥5 + 𝑎85, 𝑥5 + 𝑎170
form one orbit as do the polynomials

𝑥5 +𝑥 +𝑎17, 𝑥5 +𝑥 +𝑎34, 𝑥5 +𝑥 +𝑎68, 𝑥5 +𝑥 +𝑎136
. In general on may expect a reduction

by a factor roughly𝑚 of the size of the lookup table.
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5 Appendix: proof of Lemma 3.7
Now we give the proof of Lemma 3.7.

Proof. Write F4 = {0, 1, 𝛼, 𝛼2}. We will show that the roots of the polynomial 𝑡2 +
(𝑑+𝑓 )2

𝑑3
𝑡+ 𝑓

𝑑
can be expressed in terms of 𝛼 and the roots of the polynomial 𝑥5+𝑑𝑥2+𝑥+ 𝑓 .

This will immediately imply that 𝑔3 ∈ F2
𝑚 if 𝑚 is even and 𝑝 (𝑥) splits completely

over F2
𝑚 . What we will do is to treat𝑑 and 𝑓 as algebraically independent transcendental

variables, consider 𝑝 (𝑥) as polynomial with coefficients in F4 (𝑑, 𝑓 ) and then to study

the splitting field of 𝑝 (𝑥). We will show that an element 𝜌3 in this splitting field exists

such that 𝜌2

3
+ (𝑑+𝑓 )2

𝑑3
𝜌3 + 𝑓

𝑑
= 0. We start with the field F4 (𝑑, 𝑓 ). Let 𝑥1, . . . , 𝑥5 denote
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the five roots of 𝑥5 +𝑑𝑥2 +𝑥 + 𝑓 in an algebraic closure of F4 (𝑑, 𝑓 ). Note that 𝑝 (𝑥) has 5

distinct roots viewed as a polynomial in F4 (𝑑, 𝑓 ) [𝑥], since its derivative is 𝑥4 + 1 and 1

is not a root of 𝑝 (𝑥). Since the polynomial 𝑝 (𝑥) is irreducible as element of F4 (𝑑, 𝑓 ) [𝑥],
the extension F4 (𝑑, 𝑓 , 𝑥1)/F4 (𝑑, 𝑓 ) has degree five. However, there is no need yet to deal

with extensions, since the equation 𝑓 = 𝑥5

1
+𝑑𝑥2

1
+𝑥1 implies that F4 (𝑑, 𝑓 , 𝑥1) = F4 (𝑑, 𝑥1).

Seen as element of F4 (𝑑, 𝑥1) [𝑥], the polynomial 𝑝 (𝑥) factors into irreducibles as follows

𝑝 (𝑥) = (𝑥 − 𝑥1) (𝑥4 + 𝑥1𝑥
3 + 𝑥2

1
𝑥2 + (𝑥3

1
+ 𝑑)𝑥 + 𝑥4

1
+ 𝑑𝑥1 + 1).

This means that the extension F4 (𝑑, 𝑥1, 𝑥2)/F4 (𝑑, 𝑥1) has degree 4, but since 𝑥4

2
+ 𝑥1𝑥

3

2
+

𝑥2

1
𝑥2

2
+ (𝑥3

1
+𝑑)𝑥2 + 𝑥4

1
+𝑑𝑥1 + 1 = 0, 𝑑 can be expressed in 𝑥1 and 𝑥2. Therefore we have

F4 (𝑑, 𝑥1, 𝑥2) = F4 (𝑥1, 𝑥2), which is a more convenient description for doing calculations.

The polynomial 𝑝 (𝑥) seen as element of F4 (𝑥1, 𝑥2) [𝑥] factors into irreducibles in the

following way:

𝑝 (𝑥) = (𝑥 − 𝑥1) (𝑥 − 𝑥2)(
𝑥3 + (𝑥2 + 𝑥1)𝑥2 + (𝑥2

2
+ 𝑥1𝑥2 + 𝑥2

1
)𝑥 +

𝑥1𝑥
3

2
+ 𝑥2

1
𝑥2

2
+ 𝑥3

1
𝑥2 + 1

𝑥2 + 𝑥1

)
.

We obtain that F4 (𝑥1, 𝑥2, 𝑥3)/F4 (𝑥1, 𝑥2) is an algebraic extension of degree 3. The final

step comes from the factorization of 𝑝 (𝑥) as element in F4 (𝑥1, 𝑥2, 𝑥3) [𝑥]

𝑝 (𝑥) = (𝑥 − 𝑥1) (𝑥 − 𝑥2) (𝑥 − 𝑥3)(
𝑥2 + (𝑥3 + 𝑥2 + 𝑥1)𝑥 + 𝑥2

3
+ 𝑥2𝑥3 + 𝑥1𝑥3 + 𝑥2

2
+ 𝑥1𝑥2 + 𝑥2

1

)
.

We have now described the splitting field of 𝑝 (𝑥) as algebraic extension of degree six

of F4 (𝑥1, 𝑥2), where 𝑥1 and 𝑥2 can be viewed as independent transcendental variables.

Using this description, it is computationally very simple to factor the polynomial 𝑠 (𝑡) :=

𝑡2+ (𝑑+𝑓 )2

𝑑3
𝑡+ 𝑓

𝑑
viewed as polynomial in the variable 𝑡 and coefficients in F4 (𝑥1, 𝑥2, 𝑥3, 𝑥4).

Using the Magma computer algebra package, one finds that the polynomial 𝑠 (𝑡) has two

roots in F4 (𝑥1, 𝑥2, 𝑥3, 𝑥4). One of these roots 𝜌3 satisfies

𝑑3𝜌3 =
(𝑥1 + 1)4 (𝑥2 + 1)4

𝑥2 + 𝑥1

(
𝑥2

3
+ 𝑥2

2
+ 𝑥2𝑥1 + 𝑥2

1

)
𝑥4 + (𝑥1 + 1)4 (𝑥2 + 1)4𝑥2

3

+
(𝑥5

1
+ 𝑥1) (𝑥5

2
+ 𝑥2)

𝑥2 + 𝑥1

𝑥3

+
𝑥1𝑥

12

2
+ 𝑥2

1
𝑥11

2
+ 𝛼2 (𝑥4

1
+ 1)𝑥9

2
+ 𝛼 (𝑥5

1
+ 𝑥1)𝑥8

2
+ 𝛼 (𝑥6

1
+ 𝑥2

1
)𝑥7

2

(𝑥2 + 𝑥1)3

+
𝛼2 (𝑥7

1
+ 𝑥3

1
)𝑥6

2
+ (𝛼2𝑥8

1
+ 𝛼𝑥4

1
+ 1)𝑥5

2
+ (𝛼𝑥9

1
+ 𝛼2𝑥5

1
)𝑥4

2
+ (𝛼𝑥6

1
+ 𝛼2𝑥2

1
)𝑥3

2

(𝑥2 + 𝑥1)3

+
(𝑥11

1
+ 𝛼2𝑥7

1
+ 𝛼𝑥3

1
)𝑥2

2
+ (𝑥12

1
+ 𝛼2𝑥8

1
+ 𝛼)𝑥2 + (𝛼𝑥9

1
+ 𝑥5

1
+ 𝛼2𝑥1)

(𝑥2 + 𝑥1)3
.

For a specific choice of 𝑑, 𝑓 ∈ F2
𝑚 such that 𝑑 ≠ 0 and 𝑝 (𝑥) (now again seen as

polynomial in F2
𝑚 [𝑥]) splits completely over F2

𝑚 , then the found expression for 𝜌3
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can be evaluated for those 𝑑, 𝑓 and resulting 𝑥1, . . . , 𝑥5. Even though we do not know

𝑥1, . . . , 𝑥5 explicitly, we do know from the assumption that 𝑝 (𝑥) splits completely for

our choice of 𝑑 and 𝑓 , that all of its roots 𝑥1, . . . , 𝑥5 are in F2
𝑚 and that 𝑥1 + 𝑥2 ≠ 0.

Therefore the evaluation of 𝜌3 yields a value 𝑔3 in F2
𝑚 . Moreover, since 𝜌3 was a root of

𝑠 (𝑡), the obtained value 𝑔3 is a root of 𝑡2 + (𝑑+𝑓 )2

𝑑3
𝑡 + 𝑓

𝑑
. This is exactly what we wanted

to show. Exactly the same approach works for the case 𝑥5 + 𝑑𝑥2 + 𝑓 , but we leave the

details to the reader. □
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