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Abstract

In the theory of algebraic function fields and their applications to information
theory, the Riemann–Roch theorem plays a fundamental role. But its use, delicate
in general, is efficient and practical for applications especially in the case of non-
special divisors. In this paper, we survey known results concerning non-special
divisors in algebraic function fields defined over finite fields and enrich it with new
results about the existence of such divisors in curves of defect 𝑘 . Our presentation
is self-contained with full proofs given for each result, either original proofs or
shorter, alternative proofs.

Keywords: Finite field, function field, non-special divisor.

1 Introduction

1.1 General context
This article is mainly a survey highlighting the current state-of-the-art on the exis-

tence and the construction of non-special divisors in algebraic function fields defined
over finite fields. The growing importance of this topic has attracted many mathemati-
cians and computer scientists, who developed new ideas and obtained new results. Finite
fields constitute an important area of mathematics. They arise in many applications,
particularly in areas related to information theory, for example cryptography and error-
correcting codes. Moreover, algebraic-geometric codes “à la Goppa” whose performance
as error-correcting codes was proven by the results of Tsfasman–Vladuts–Zink in [29]
also play an important role in cryptography and in algorithmic or computational al-
gebraic geometry as demonstrated by the work carried out in recent years on secret
sharing schemes (see for example [8], [4], [5] and [30]) or on the algebraic complexity
of the multiplication in the finite fields (see the survey [2]). In all of these cases, the
use of the Riemann–Roch theorem with non-special divisors of degree 𝑑 in algebraic
function fields of genus 𝑔 over finite fields, in particular in the non-trivial case where
𝑔 − 1 ⩽ 𝑑 ⩽ 2𝑔 − 2, is crucial.
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1.2 Organisation
In this paper, we give a survey of the known results concerning the non-special

divisors in the algebraic function fields defined over finite fields, enriched with some
unpublished recent results. In particular, we have chosen to be self-contained by giving
the full proofs of each result that relates directly to the non-special divisors, the original
proofs or shorter alternative proofs.

In Section 2, we present Notation and the well-known elementary results about non-
special divisors in algebraic function fields defined over an arbitrary field. In Section 3,
we focus on the results concerning the existence of non-special divisors of degree 𝑔 and
𝑔 − 1. Finally, in section 3.6, new results are proposed on the existence of these divisors
in curves of defect 𝑘 .

2 Preliminaries

2.1 Notation.
Let F/F𝑞 be an algebraic function field of one variable defined over a finite field F𝑞 .

We will always suppose that the full constant field of F/F𝑞 is F𝑞 and denote by 𝑔 the
genus of F. If 𝐷 is a (rational) divisor, recall that the F𝑞-Riemann–Roch vector space
associated to 𝐷 and denoted L(𝐷) is the subspace of rational functions

L(𝐷) = {𝑥 ∈ F : (𝑥) ⩾ −𝐷} ∪ {0}. (1)

By the Riemann–Roch theorem we know that the dimension of this vector space, denoted
by dim(𝐷), is related to the genus of F and to the degree deg(𝐷) of 𝐷 by

dim(𝐷) = deg(𝐷) − 𝑔 + 1 + dim(𝜅 − 𝐷), (2)

where 𝜅 denotes a canonical divisor of F/F𝑞 . In this relation, the complementary term
𝑖 (𝐷) = dim(𝜅 −𝐷) is called the index of speciality and is not easy to compute in general.
In particular, a divisor 𝐷 is non-special when the index of speciality 𝑖 (𝐷) is zero. Let
us recall the usual notation (for the basic notions related to an algebraic function field
see [25]). For any integer 𝑘 ⩾ 1 we denote by P𝑘 (F/F𝑞) the set of places of degree 𝑘 , by
𝐵𝑘 (F/F𝑞) the cardinality of this set and by P(F/F𝑞) = ∪𝑘P𝑘 (F/F𝑞). The divisor group
of F/F𝑞 is denoted by D(F/F𝑞). If a divisor 𝐷 ∈ D(F/F𝑞) is such that

𝐷 =
∑︁

𝑃∈P(F/F𝑞 )
𝑛𝑃𝑃,

the support of 𝐷 is the following finite set

supp(𝐷) =
{
𝑃 ∈ P(F/F𝑞) : 𝑛𝑃 ≠ 0

}
and its degree is

deg(𝐷) =
∑︁

𝑃∈P(F/F𝑞 )
𝑛𝑃 deg(𝑃).
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We denote by D𝑛 (F/F𝑞) the set of divisors of degree 𝑛. We say that the divisor 𝐷 is
effective if for each 𝑃 ∈ supp(𝐷) we have 𝑛𝑃 ⩾ 0 and we denote by D+

𝑛 (F/F𝑞) the set of
effective divisors of degree 𝑛 and by 𝐴𝑛 = #D+

𝑛 (F/F𝑞) the cardinal of the set D+
𝑛 (F/F𝑞).

In general, we will note #U the cardinal of the set U. The dimension of a divisor 𝐷 ,
denoted by dim(𝐷), is the dimension of the vector space L(𝐷) defined by formula (1).
Let 𝑥 ∈ F/F𝑞 , we denote by (𝑥) the divisor associated to the rational function 𝑥 , namely

(𝑥) =
∑︁

𝑃 ∈P(F/F𝑞 )
𝑣𝑃 (𝑥)𝑃,

where 𝑣𝑃 is the valuation at the place 𝑃 . Such a divisor (𝑥) is called a principal divisor,
and the set of principal divisors is a subgroup of D0 (F/F𝑞) denoted by Princ(F/F𝑞). The
factor group

C(F/F𝑞) = D(F/F𝑞)/Princ(F/F𝑞)
is called the divisor class group. If 𝐷1 and 𝐷2 are in the same class, namely if the divisor
𝐷1 − 𝐷2 is principal, we will write 𝐷1 ∼ 𝐷2. We will denote by [𝐷] the class of the
divisor 𝐷 .

If 𝐷1 ∼ 𝐷2, the following holds

deg(𝐷1) = deg(𝐷2), dim(𝐷1) = dim(𝐷2),

so that we can define the degree deg( [𝐷]) and the dimension dim( [𝐷]) of a class. Since
the degree of a principal divisor is 0, we can define the subgroup C(F/F𝑞)0 of classes of
degree 0 divisors in C(F/F𝑞). It is a finite group and we denote by ℎ its order, called the
class number of F/F𝑞 . Moreover if

𝐿(𝑡) =
2𝑔∑︁
𝑖=0

𝑎𝑖𝑡
𝑖 =

𝑔∏
𝑖=1

(1 − 𝛼𝑖𝑡) (1 − 𝛼𝑖𝑡)

with |𝛼𝑖 | =
√
𝑞 is the numerator of the Zeta function of F/F𝑞 , we have ℎ = 𝐿(1). Finally

we will denote ℎ𝑛,𝑘 the number of classes of divisors of degree 𝑛 and of dimension 𝑘 .
In the sequel, we may simultaneously use the dual language of (smooth, absolutely

irreducible, projective) curves by associating to F/F𝑞 a unique (F𝑞-isomorphism class of)
curve C(F𝑞) defined over F𝑞 of genus 𝑔 and conversely to such a curve its function field
C(F𝑞) is the set of F𝑞-rational points on C, and F𝑞 (C) is the field of rational functions
on C over F𝑞 . Because, by F.K. Schmidt’s theorem (cf. [25, Corollary V.1.11]) there
always exists a rational divisor of degree one, the group C(F/F𝑞)0 is isomorphic to
the group of F𝑞-rational points on the Jacobian of C, denoted by Jac(C). In particular
ℎ(F/F𝑞) = # Jac(C) (F𝑞) is the cardinal of the set Jac(C) (F𝑞).

2.2 Elementary results on non-special divisors.
Let F/F𝑞 be a function field of genus 𝑔 > 0. First recall some results about non-

special divisors (cf. [25]). If deg(𝐷) < 0, then dim(𝐷) = 0 and if deg(𝐷) ⩾ 0 then
dim(𝐷) ⩾ deg(𝐷) − 𝑔 + 1. When 0 ⩽ deg(𝐷) ⩽ 2𝑔 − 2, the computation of dim(𝐷) is
difficult, but we have the following general results.
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Proposition 2.1. 1. F𝑞 ⊂ L(𝐷) if and only if 𝐷 ⩾ 0.

2. If deg(𝐷) > 2𝑔 − 2, then 𝐷 is non-special.

3. The property of a divisor 𝐷 being special or non-special depends only on the class of
𝐷 up to equivalence.

4. Any canonical divisor 𝜅 is special, deg(𝜅) = 2𝑔 − 2 and dim(𝜅) = 𝑔.

5. Any divisor 𝐷 with dim(𝐷) > 0 and deg(𝐷) < 𝑔 is special.

6. If 𝐷 is non-special and 𝐷 ′ ⩾ 𝐷 then 𝐷 ′ is non-special.

7. For any divisor 𝐷 with 0 ⩽ deg(𝐷) ⩽ 2𝑔 − 2, dim(𝐷) ⩽ 1 + 1
2 deg(𝐷) holds.

For the rational function field F = F𝑞 (𝑥) (𝑔 = 0), there is no non-zero regular
differential, thus, all divisors of degree 𝑑 ⩾ 0 are non-special. From now, we focus on the
existence of non-special divisors of degree 𝑔 or 𝑔− 1. Note that 𝑔− 1 is the least possible
degree for a divisor 𝐷 to be non-special. We have the following trivial observations.

Lemma 2.2. Assume 𝑔 ⩾ 1. Let 𝐷 ∈ D(F/F𝑞) and set 𝑑 = deg(𝐷).

1. If 𝑑 = 𝑔, 𝐷 is a non-special divisor if and only if dim(𝐷) = 1. Assume that 𝐷 is a
non-special divisor of degree 𝑔; then, 𝐷 ∼ 𝐷0, where 𝐷0 is effective. If 𝐷 ⩾ 0 and
𝑑 = 𝑔, 𝐷 is non-special divisor if and only if L(𝐷) = F𝑞 .

2. If 𝑑 = 𝑔 − 1, 𝐷 is a non-special divisor if and only if dim(𝐷) = 0. A non-special
divisor of degree 𝑔 − 1, if any, is never effective.

3. If 𝑔 > 1 and 𝐴𝑔−1 = 0, then any divisor of degree 𝑔 − 1 is non-special.

A consequence of assertion 1 is the following.

Lemma 2.3. Assume that 𝐷 is an effective non-special divisor of degree 𝑔 ⩾ 1. If there
exists a degree one place 𝑃 such that 𝑃 ∉ supp(𝐷), then 𝐷 − 𝑃 is a non-special divisor of
degree 𝑔 − 1.

3 Existence of non-special divisors of degree 𝒈 and
𝒈 − 1

Unless otherwise specified, the results in this section come from [1] by S. Ballet and
D. Le Brigand. They determine the necessary and sufficient conditions for the existence
of non-special divisors of degree 𝑔 and 𝑔 − 1 in the general case and they apply them to
the cases of 𝑔 = 1 and 𝑔 = 2.
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3.1 General case
Here, we give some general results about non-special divisors of degree 𝑔 and 𝑔 − 1.

Proposition 3.1. Let F/F𝑞 be an algebraic function field of genus 𝑔 ⩾ 1.

1. If 𝐵1 (F/F𝑞) ⩾ 𝑔, there exists a non-special divisor 𝐷 such that 𝐷 ⩾ 0, deg(𝐷) = 𝑔
and supp(𝐷) ⊂ P1 (F/F𝑞).

2. If 𝐵1 (F/F𝑞) ⩾ 𝑔 + 1, there exists a non-special divisor such that deg(𝐷) = 𝑔 − 1 and
supp(𝐷) ⊂ P1 (F/F𝑞).

Proof. 1. See [25, Proposition I.6.10].

2. Let 𝑇 ⊂ P1 (F/F𝑞) be such that #𝑇 = 𝑔 and, using assertion 1, let 𝐷 ⩾ 0 be a
non-special divisor such that deg(𝐷) = 𝑔 and supp(𝐷) ⊂ 𝑇 . Select 𝑃 ∈ P1 (F/F𝑞) \
supp(𝐷) and apply Lemma 2.3.

□

We denote by E𝑔 and E𝑔−1 the following properties:

E𝑔: F/F𝑞 has an effective non-special divisor of degree 𝑔.

E𝑔−1: F/F𝑞 has a non-special divisor of degree 𝑔 − 1.

If F/F𝑞 has enough rational places compared to the genus, then E𝑔 and E𝑔−1 are true.

Proposition 3.2. Let F/F𝑞 be a function field of genus 𝑔. Denote by ℎ the order of the
divisor class group of F/F𝑞 .

1. If 𝐴𝑔 < ℎ(𝑞 + 1), then E𝑔 is true.

2. If 𝐴𝑔−1 < ℎ, then E𝑔−1 is true.

3. Assume 𝑔 ⩾ 2. If 𝐴𝑔−2 < ℎ, then E𝑔 is true.

4. If 𝑔 = 2 or 3, E𝑔 is untrue if and only if 𝐴𝑔−2 = ℎ.

Proof. Recall that, in any function field, there exists a degree 1 divisor (this is a result
of F.K. Schmidt; see [25, Corollary V.1.11] for instance), so there exist divisors of any
degree ⩾ 1. Let 𝑑 ⩾ 1 and 𝐷0 ∈ D+

𝑑
(F/F𝑞), and consider the map

𝜓𝑑,𝐷0 :
{
D+
𝑑
(F/F𝑞) −→ Jac(F/F𝑞)

𝐷 ↦−→ [𝐷 − 𝐷0] .

1. First, it is well known that 1 ⩽ ℎ ⩽ 𝐴𝑔 is true for any function field. Indeed, let 𝐷
be such that deg(𝐷) = 𝑔. By the Riemann–Roch, dim(𝐷) ⩾ 1; thus, there exists an
effective divisor of degree 𝑔 which is equivalent to 𝐷 . So assume 𝐷0 ∈ D+

𝑔 (F/F𝑞)
and consider the map 𝜓𝑔,𝐷0 . For all [𝑅] ∈ Jac(F/F𝑞), we have deg(𝑅 + 𝐷0) = 𝑔;
thus, dim(𝑅 + 𝐷0) ⩽ 1 and there exists 𝑢 ∈ F∗ such that 𝐷 := 𝑅 + 𝐷0 + (𝑢) is in
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D+
𝑔 (F/F𝑞) and [𝑅] = [𝐷 −𝐷0] =𝜓𝑔,𝐷0 (𝐷). This proves that𝜓𝑔,𝐷0 is surjective and

that ℎ ⩽ 𝐴𝑔. Assume now that F/F𝑞 has no non-special divisor 𝐷 of degree 𝑔.
Then, dim(𝐷) ⩾ 2 for all degree 𝑔 divisors; thus, for all [𝑅] ∈ Jac(F/F𝑞), we have

#
{
𝐷 ∈ D+

𝑔 (F/F𝑞), [𝐷 − 𝐷0] = [𝑅]
}
=
𝑞dim(𝑅+𝐷0 ) − 1

𝑞 − 1 ⩾
𝑞2 − 1
𝑞 − 1 = 𝑞 + 1

and 𝐴𝑔 ⩾ ℎ(𝑞 + 1).

2. A divisor 𝐷 of degree 𝑔− 1 is non-special if and only if dim(𝐷) = 0. If 𝑔 = 1, there
exists a non-special divisor of degree 𝑔 − 1 = 0 if and only if ℎ = 𝐵1 > 1 = 𝐴0,
since two distinct degree one places are not equivalent. Assume now that 𝑔 > 1.
Hence, it is sufficient to prove the existence of a divisor of degree 𝑔 − 1 which is
not equivalent to any effective divisor. If𝐴𝑔−1 = 0, the result is proved. Otherwise,
let 𝐷0 be an effective divisor of degree 𝑔 − 1 ⩾ 1 and consider the map 𝜓𝑔−1,𝐷0 .
If 𝐴𝑔−1 < ℎ, this map is not surjective. Hence, there exists a zero-degree divisor
𝑅 such that [𝑅] is not in the image of 𝜓𝑔−1,𝐷0 . Consequently, 𝐷 = 𝑅 + 𝐷0 is a
divisor of degree 𝑔 − 1 which is not equivalent to an effective divisor. Thus, 𝐷 is
non-special.

3. From the functional equation of the zeta function, it can be deduced (see [18,
Lemma 3(i)]) that, for 𝑔 ⩾ 1, one has

𝐴𝑛 = 𝑞𝑛+1−𝑔𝐴2𝑔−2−𝑛 + ℎ𝑞
𝑛+1−𝑔 − 1
𝑞 − 1 for all 0 ⩽ 𝑛 ⩽ 2𝑔 − 2.

For 𝑔 ⩾ 2 and 𝑛 = 𝑔 this gives

𝐴𝑔 = ℎ + 𝑞𝐴𝑔−2 .

Thus, if 𝑔 ⩾ 2,
𝐴𝑔 < (𝑞 + 1)ℎ ⇐⇒ 𝐴𝑔−2 < ℎ.

4. Assume that 𝑔 = 2 or 3. Then if deg(𝐷) = 𝑔 and dim(𝐷) ⩾ 2, one has dim(𝐷) = 2
by assertion 7 of Proposition 2.1, since dim(𝐷) ⩽ 𝑔

2 + 1. Thus, E𝑔 is untrue if and
only if 𝐴𝑔 = (𝑞 + 1)ℎ, which is equivalent to 𝐴𝑔−2 = ℎ.

□

We quote the following consequence of assertion 2.

Corollary 3.3. Let F/F𝑞 be an algebraic function field of genus 𝑔 ⩾ 2 such that 𝐴𝑔−1 ⩾ 1.
Denote by ℎ the order of the divisor class group of F/F𝑞 . Then E𝑔−1 is untrue if and only if
there exist ℎ elements of D+

𝑔−1(F/F𝑞) pairwise non-equivalent.

Proof. Let 𝑟 be the maximum number of pairwise non-equivalent elements of
D+
𝑔−1 (F/F𝑞) and let 𝐷1, . . . , 𝐷𝑟 be elements of D+

𝑔−1(F/F𝑞) pairwise non-equivalent.
Then

{[0] = [𝐷1 − 𝐷1], [𝐷2 − 𝐷1], . . . , [𝐷𝑟 − 𝐷1]}
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is a subset of Jac(F/F𝑞) of order 𝑟 . If 𝑟 = ℎ, for any divisor 𝐷 of degree 𝑑 = 𝑔 − 1, we
have [𝐷 − 𝐷1] = [𝐷𝑖 − 𝐷1] for some 𝑖 , 1 ⩽ 𝑖 ⩽ ℎ, and then 𝐷 ∼ 𝐷𝑖 . Thus, dim(𝐷) ⩾ 1.
If 𝑟 < ℎ,𝜓𝑔−1,𝐷1 is not surjective and the result follows. □

3.2 Existence of non-special divisors of degree 𝒈
Now, we particularly focus on the non-special divisors of degree 𝑔. First, we give

useful properties and interesting information to study the existence of non-special
divisors. For example, it is known that this existence is relied on the number of effective
divisors of certain degrees 𝐴𝑛 .

Lemma 3.4. If 𝐵1 ⩾ 𝑚 ⩾ 1, then for all 𝑛 ⩾ 2 one has

𝐴𝑛 ⩾ 𝑚𝐴𝑛−1 −
𝑚(𝑚 − 1)

2 𝐴𝑛−2 . (3)

Proof. See [18, Lemma 4]. □

Moreover, it is also related to the class number ℎ of algebraic function fields.

Proposition 3.5. Let F/F𝑞 be a function field of genus 𝑔 ⩾ 2. We denote by ℎ its divisor
class number.

• Up to isomorphism, there are 4 function fields F/F𝑞 , 2 of them being hyperelliptic,
such that ℎ = 1 and 𝑔 ⩾ 2. They are obtained for F = F2 (𝑥,𝑦) as in Table 1.

• Up to isomorphism, there are 15 functions fields F/F𝑞 , 7 of them being hyperelliptic,
such that ℎ = 2 and 𝑔 ⩾ 2.They are obtained for F = F2 (𝑥,𝑦) as in Table 2.

Proof. See [13] and [15] for the solutions of the (ℎ = 1) problem and [12, Proposition 3.1
and Theorem 4.1] for the solutions of the (ℎ = 2) problem. □

Proposition 3.6. An algebraic function field F/F𝑞 of genus 𝑔 ⩾ 2 has an effective non-
special divisor of degree 𝑔 in the following cases:

(i) 𝑞 ⩾ 3.

(ii) 𝑞 = 2 and 𝑔 = 2, unless F = F2 (𝑥,𝑦) with

𝑦2 + 𝑦 + (𝑥5 + 𝑥3 + 1) = 0, and

𝑦2 + 𝑦 + (𝑥3 + 𝑥2 + 1)/(𝑥3 + 𝑥 + 1) = 0.

(iii) 𝑞 = 2 and 𝑔 = 3.

(iv) 𝑞 = 2, 𝑔 ⩾ 4 and 𝐵1 (F/F𝑞) ⩾ 3.
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𝑔 Equation 𝐵1 𝐵2 𝐵3

2 𝑦2 + 𝑦 + (𝑥5 + 𝑥3 + 1) = 0 1 2
2 𝑦2 + 𝑦 + (𝑥3 + 𝑥2 + 1)/(𝑥3 + 𝑥 + 1) = 0 0 3
3 𝑦4 + 𝑥𝑦3 + (𝑥 + 1)𝑦 + (𝑥4 + 𝑥3 + 1) = 0 0 0 1
3 𝑦4 + 𝑥𝑦3 + (𝑥 + 1)𝑦 + (𝑥4 + 𝑥 + 1) = 0 0 1 1

Table 1: The four function fields for which ℎ = 1 and 𝑔 ⩾ 2.

𝑞 𝑔 Equation 𝐵1 𝐵2 𝐵3 𝐵4

3 2 𝑦2 − 2(𝑥2 + 1) (𝑥4 + 2𝑥3 + 𝑥 + 1) = 0 1 5
2 2 𝑦2 + 𝑦 + (𝑥3 + 𝑥 + 1)/(𝑥2 + 𝑥 + 1) = 0 1 3

𝑦2 + 𝑦 + (𝑥4 + 𝑥 + 1)/𝑥 = 0 2 1
2 3 𝑦2 + 𝑦 + (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)/(𝑥3 + 𝑥 + 1) = 0 1 2 1

𝑦2 + 𝑦 + (𝑥5 + 𝑥2 + 1)/(𝑥2 + 𝑥 + 1) = 0 1 3 0
𝑦2 + 𝑦 + (𝑥6 + 𝑥 + 1)/(𝑥2 + 𝑥 + 1)3 = 0 0 4 2
𝑦2 + 𝑦 + (𝑥4 + 𝑥3 + 1)/(𝑥4 + 𝑥 + 1) = 0 0 3 2
𝑦4 + 𝑥𝑦3 + (𝑥 + 1)𝑦 + (𝑥4 + 𝑥2 + 1) = 0 0 2 2
𝑦3 + (𝑥2 + 𝑥 + 1)𝑦 + (𝑥4 + 𝑥3 + 1) = 0 1 0 3
𝑦3 + 𝑦 + (𝑥4 + 𝑥3 + 1) = 0 1 1 2

2 4 𝑦3 + (𝑥4 + 𝑥3 + 1)𝑦 + (𝑥6 + 𝑥3 + 1) = 0 0 0 4 2
𝑦3 + (𝑥4 + 𝑥2 + 1)𝑦 + (𝑥6 + 𝑥5 + 1) = 0 0 0 4 2
𝑦3 + (𝑥4 + 𝑥3 + 1)𝑦 + (𝑥6 + 𝑥 + 1) = 0 0 1 3 3
𝑦6 + 𝑥𝑦5 + (𝑥2 + 1)𝑦4 + (𝑥3 + 𝑥2)𝑦3

+(𝑥6 + 𝑥5 + 𝑥3 + 𝑥 + 1) = 0
0 1 1 3

𝑦6 + 𝑥𝑦5 + 𝑥3𝑦3 + 𝑦2 + (𝑥5 + 𝑥2)𝑦 + (𝑥6 + 𝑥2 + 1) = 0 0 1 2 3

Table 2: The fifteen function fields for which ℎ = 2 and 𝑔 ⩾ 2.
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Proof. We set 𝐿(𝑡) := 𝐿(F/F𝑞, 𝑡). For 𝑔 ⩾ 2, it follows that (see [18, Lemma 3])

𝑔−2∑︁
𝑛=0

𝐴𝑛𝑡
𝑛 +

𝑔−1∑︁
𝑛=0

𝑞𝑔−1−𝑛𝐴𝑛𝑡
2𝑔−2−𝑛 =

𝐿(𝑡) − ℎ𝑡𝑔
(1 − 𝑡) (1 − 𝑞𝑡) .

Substituting 𝑡 = 𝑞−1/2 into the last identity, we obtain

2
𝑔−2∑︁
𝑛=0

𝑞−𝑛/2𝐴𝑛 + 𝑞−(𝑔−1)/2𝐴𝑔−1 =
ℎ − 𝑞𝑔/2𝐿(𝑞−1/2)(
𝑞1/2 − 1

)2
𝑞 (𝑔−1)/2

and, since 𝐿(𝑞−1/2) = ∏𝑔

𝑖=1
��1 − 𝜋𝑖𝑞−1/2��2 ⩾ 0, we have

2
𝑔−2∑︁
𝑛=0

𝑞 (𝑔−1−𝑛)/2𝐴𝑛 +𝐴𝑔−1 ⩽
ℎ(

𝑞1/2 − 1
)2 . (4)

Now consider each case in turn:

(i) If 𝑞 ⩾ 3. Using (4), 𝐴𝑔−2 ⩾ ℎ implies

2𝑞1/2 ⩽
1(

𝑞1/2 − 1
)2 ,

which is absurd if 𝑞 ⩾ 3. Thus, 𝐴𝑔−2 < ℎ is always satisfied and so E𝑔 is true.

(ii) If 𝑞 = 2 and 𝑔 ⩾ 3, (4) implies

4𝐴𝑔−3 + 2
√

2𝐴𝑔−2 +𝐴𝑔−1 ⩽
ℎ(√

2 − 1
)2 =

(
3 + 2

√
2
)
ℎ. (5)

Assume that 𝐵1 (F/F𝑞) ⩾ 𝑚 = 3; then, by (3) with𝑛 = 𝑔−1, we have𝐴𝑔−1+3𝐴𝑔−3 ⩾
3𝐴𝑔−2, and finally, using (5),

𝐴𝑔−3 +
(
3 + 2

√
2
)
𝐴𝑔−2 ⩽

(
3 + 2

√
2
)
ℎ.

Since 𝐴𝑔−3 ⩾ 1, because if 𝑔 = 3, 𝐴𝑔−3 = 𝐴0 = 1 and if 𝑔 > 3, 𝐴𝑔−3 ⩾ 𝐵1 (F/F𝑞) ⩾
𝑚 = 3, we deduce that, if 𝐵1 (F/F𝑞) ⩾ 3 and 𝑔 ⩾ 3, then 𝐴𝑔−2 < ℎ and so E𝑔 is
true.

(iii) If 𝑞 = 2 and 𝑔 = 2, using assertion (4) of Proposition 3.2. In fact, E𝑔 is untrue if
and only if ℎ = 𝐴𝑔−2 = 𝐴1 = 𝐵1 (F/F𝑞). Since E𝑔 is true if 𝐵1 (F/F𝑞) ⩾ 3, we are
left with ℎ = 𝐵1 (F/F𝑞) = 1 or 2 and we deduce from Proposition 3.5 that there is
no solution.

(iv) If 𝑞 = 2 and 𝑔 = 2, using assertion (4) of Proposition 3.2, E𝑔 is untrue if and only
if ℎ = 𝐴𝑔−2 = 𝐴0 = 1. By Proposition 3.5 there are only two function fields F/F𝑞
of genus 2 such that ℎ = 1. They are such that 𝑞 = 2 and F = F2 (𝑥,𝑦), with
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• 𝑦2 + 𝑦 + (𝑥5 + 𝑥3 + 1) = 0 and 𝐵1 (F/F𝑞) = 1, 𝐵2 (F/F𝑞) = 2.
• 𝑦2 + 𝑦 + (𝑥3 + 𝑥2 + 1)/(𝑥3 + 𝑥 + 1) = 0 and 𝐵1 (F/F𝑞) = 0, 𝐵2 (F/F𝑞) = 3.

Since ℎ = 1, all divisors of a given degree 𝑑 > 0 are equivalent. In particular,
all the divisors of degree 𝑔 = 2 are equivalent to any divisor of D+

2 (F/F𝑞), and
therefore they are special.

□

The following lemma from H. Niederreiter and C. Xing in [18, Lemma 6] is another
characterization of the existence of these divisors. This result is less precise than
Proposition 3.6 and the proof is based on the same tools.

Lemma 3.7. There exists an effective divisor 𝐷 of F/F𝑞 with deg(𝐷) = 𝑔 and dim(𝐷) = 1
if either 𝐵1 (F/F𝑞) ⩾ 2 and 𝑞 ⩾ 3, or 𝐵1 (F/F𝑞) ⩾ 4 and 𝑞 = 2.

Proof. The lemma is trivial for 𝑔 = 0. If 𝑔 = 1, let 𝐷 be a rational place of F/F𝑞 , then
dim(𝐷) = 1. Now let 𝑔 ⩾ 2. Suppose that dim(𝐷) ⩾ 2 for any positive divisor 𝐷 with
deg(𝐷) = 𝑔. If 𝑔 = 2, then by [18, Lemma 3(i)] we have 𝐴2 = 𝑞 +ℎ and by [18, Lemma 5]
we have 𝐴2 ⩾ (𝑞 + 1)ℎ. Thus ℎ ⩽ 1, which contradicts ℎ ⩾ 𝐴1 ⩾ 2.

So we may assume 𝑔 ⩾ 3. Substituting 𝑡 = 𝑞−1/2 in the identity in [18, Lemma 3(ii)],
we obtain

2
𝑔−2∑︁
𝑛=0

𝑞−𝑛/2𝐴𝑛 + 𝑞−(𝑔−1)/2𝐴𝑔−1 =
ℎ − 𝑞𝑔/2𝐿(𝑞−1/2)(
𝑞1/2 − 1

)2
𝑞 (𝑔−1)/2

.

Since

𝐿(𝑞−1/2) =
𝑔∏
𝑗=1

���1 − 𝛼 𝑗𝑞
−1/2

���2 ⩾ 0,

we infer that

2
𝑔−2∑︁
𝑛=0

𝑞 (𝑔−1−𝑛)/2𝐴𝑛 +𝐴𝑔−1 ⩽
ℎ(

𝑞1/2 − 1
)2 . (6)

Since [18, Lemma 3(i)] yields 𝐴𝑔 = ℎ + 𝑞𝐴𝑔−2 and [18, Lemma 5] yields 𝐴𝑔 ⩾ (𝑞 + 1)ℎ,
we have 𝐴𝑔−2 ⩾ ℎ. From (6) we then get

2𝑞1/2 ⩽
1(

𝑞1/2 − 1
)2 .

This inequality is impossible if 𝑞 ⩾ 3, hence it remains to prove the lemma for 𝑞 = 2.
If 𝑞 = 2 and 𝐵1 (F/F𝑞) ⩾ 4, then from (6) we obtain

4𝐴𝑔−3 + 2
√

2𝐴𝑔−2 +𝐴𝑔−1 ⩽
ℎ(√

2 − 1
)2 . (7)
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Together with [18, Lemma 4] with𝑚 = 3 and 𝑛 = 𝑔 − 1 this yields

𝐴𝑔−3 +
(
3 + 2

√
2
)
𝐴𝑔−2 ⩽

ℎ(√
2 − 1

)2 . (8)

if we use [18, Lemma 4] with𝑚 = 4 and 𝑛 = 𝑔 − 1 in (7), then we get

−2𝐴𝑔−3 +
(
4 + 2

√
2
)
𝐴𝑔−2 ⩽

ℎ(√
2 − 1

)2 . (9)

By eliminating 𝐴𝑔−3 from (8) and (9), we arrive at(
10 + 6

√
2
)
𝐴𝑔−2 ⩽

3ℎ(√
2 − 1

)2 ,

and therefore
10 + 6

√
2 ⩽

3(√
2 − 1

)2 ,

which is absurd. □

3.3 Existence of non-special divisors of degree 𝒈 − 1

In this section, we are interested in the non-special divisors of degree 𝑔 − 1. We
begin with the particular case where 𝑔 = 1.

If the genus of 𝐹/F𝑞 is 𝑔 = 1, any divisor of degree 𝑑 = 𝑔 is non-special since
𝑑 ⩾ 2𝑔 − 1 = 1 and there exists a non-special divisor of degree 𝑔 − 1 = 0 if and only if
the divisor class number ℎ is > 1, i.e. 𝐵1 (F/F𝑞) ⩾ 2. So there are exactly three function
fields of genus one which have no non-special divisor of degree 𝑔 − 1. They are the
elliptic solutions to the divisor class number one problem (see [14] and [15]):

𝑞 = 2, 𝑦2 + 𝑦 + (𝑥3 + 𝑥 + 1) = 0,
𝑞 = 3, 𝑦2 − (𝑥3 + 2𝑥 + 2) = 0,
𝑞 = 4, 𝑦2 + 𝑦 + (𝑥3 + 𝑎) = 0, where F4 = F2 (𝑎).

So, in the rest of this paper, except otherwise stated, we consider function fields of genus
at least two.

Theorem 3.8. Let F/F𝑞 be a function field of genus 𝑔 ⩾ 2. Then E𝑔−1 is true in the
following cases:

(i) 𝑞 ⩾ 4.

(ii) 𝑔 = 2, unless F/F𝑞 := F2 (𝑥,𝑦)/F2, with

𝑦2 + 𝑦 + (𝑥5 + 𝑥3 + 1) = 0, or

𝑦2 + 𝑦 + (𝑥4 + 𝑥 + 1)/𝑥 = 0.
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Proof. Recall that, 𝐴𝑔−1 = 0, the existence is clear.

(i) Assume 𝑞 ⩾ 4. By (4), for 𝑔 ⩾ 2 we have:

𝐴𝑔−1 < 2𝑞 (𝑔−1)/2𝐴0 +𝐴𝑔−1 ⩽ 2
𝑔−2∑︁
𝑛=0

𝑞 (𝑔−1−𝑛)/2𝐴𝑛 +𝐴𝑔−1 ⩽
ℎ(

𝑞1/2 − 1
)2 .

Thus, if 𝑞 ⩾ 4, we have 𝐴𝑔−1 < ℎ and the result follows from Proposition 3.2.

(ii) Assume 𝑔 = 2. If 𝐴𝑔−1 = 𝐵1 (F/F𝑞) < ℎ, the result follows from Proposition 3.2.
This is the case when 𝐵1 (F/F𝑞) = 0 and then all divisors of degree 𝑔 − 1 are
non-special. If 𝐵1 (F/F𝑞) ⩾ 𝑔 + 1 = 3, the result is true by Proposition 3.1. The
remaining cases are 𝐵1 (F/F𝑞) = 1 or 2 with ℎ = 𝐵1 (F/F𝑞). By Proposition 3.5,
there are two solutions:

(a) 𝐵1 (F/F𝑞) = 1 and ℎ = 1. There is a unique function field satisfying these
conditions. It is F/F𝑞 := F2 (𝑥,𝑦)/F2, with

𝑦2 + 𝑦 + (𝑥5 + 𝑥3 + 1) = 0.

Since ℎ = 1, all divisors of degree 𝑔 − 1 = 1 are equivalent to the place of
degree 1; thus, they are special.

(b) 𝐵1 (F/F𝑞) = 2 and ℎ = 2. There is a unique function field satisfying these
conditions. It is F/F𝑞 := F2 (𝑥,𝑦)/F2, with

𝑦2 + 𝑦 + (𝑥4 + 𝑥 + 1)/𝑥 = 0.

Since the two degree one places are non-equivalent, it follows from Corol-
lary 3.3 that E𝑔−1 is untrue.

□

In the following lemma, the value of 𝐴𝑔−1 is given in terms of coefficients of the
polynomial 𝐿(F/F𝑞, 𝑡).

Lemma 3.9. Let F/F𝑞 be a function field of genus 𝑔 and let 𝐿(𝑡) =
∑2𝑔

𝑖=0 𝑎𝑖𝑡𝑖 be the
numerator of its Zeta function. Then

𝐴𝑔−1 =
1

𝑞 − 1

(
ℎ −

(
𝑎𝑔 + 2

𝑔−1∑︁
𝑖=0

𝑎𝑖

))
.

Proof. It is a well-known result that

𝑍 (𝑡) =
+∞∑︁
𝑚=0

𝐴𝑚𝑡
𝑚 =

∑2𝑔
𝑖=0 𝑎𝑖𝑡

𝑖

(1 − 𝑡) (1 − 𝑞𝑡) .
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We deduce that for all𝑚 ⩾ 0,

𝐴𝑚 =

𝑚∑︁
𝑖=0

𝑞𝑚−𝑖+1 − 1
𝑞 − 1 𝑎𝑖 .

In particular,

(𝑞 − 1)𝐴𝑔−1 =

𝑔−1∑︁
𝑖=0

(
𝑞𝑔−𝑖 − 1

)
𝑎𝑖 .

Since 𝑎𝑖 = 𝑞𝑖−𝑔𝑎2𝑔−𝑖 , for all 𝑖 = 0, . . . , 𝑔, we obtain

(𝑞 − 1)𝐴𝑔−1 = 𝑞
𝑔

𝑔−1∑︁
𝑖=0

𝑞−𝑖𝑎𝑖 −
𝑔−1∑︁
𝑖=0

𝑎𝑖 = 𝑞
𝑔

𝑔−1∑︁
𝑖=0

𝑞−𝑖𝑞𝑖−𝑔𝑎2𝑔−𝑖 −
𝑔−1∑︁
𝑖=0

𝑎𝑖 .

Hence,

(𝑞 − 1)𝐴𝑔−1 =

𝑔−1∑︁
𝑖=0

(
𝑎2𝑔−𝑖 − 𝑎𝑖

)
.

Furthermore, we know that ℎ = 𝐿(1) = ∑2𝑔
𝑖=0 𝑎𝑖 , therefore,

𝐴𝑔−1 =
1

𝑞 − 1

(
ℎ −

(
𝑎𝑔 + 2

𝑔−1∑︁
𝑖=0

𝑎𝑖

))
.

□

The preceding lemma, Corollary 3.3 and Assertion 2 of Proposition 3.2 yield:

Corollary 3.10. Let F/F𝑞 be a function field of genus 𝑔 and 𝐿(𝑡) =
∑2𝑔

𝑖=0 𝑎𝑖𝑡
𝑖 be the

𝐿-polynomial of F/F2. Then

• For 𝑞 ⩾ 3, 𝑎𝑔 + 2
∑𝑔−1

𝑖=0 𝑎𝑖 ⩾ 0 if and only if E𝑔−1 is true.

• For 𝑞 = 2, 𝑎𝑔 + 2
∑𝑔−1

𝑖=0 𝑎𝑖 > 0 if and only if E𝑔−1 is true.

Example 3.11. The Hermitian function field F/F𝑞2 is such that F = F𝑞 (𝑥,𝑦) with 𝑦𝑞 +
𝑦 − 𝑥𝑞+1 = 0. It is a maximal function field of genus 𝑔 =

𝑞 (𝑞−1)
2 and it is the constant

field extension of G/F𝑞 , where G = F𝑞 (𝑥,𝑦), with 𝑦𝑞 + 𝑦 − 𝑥𝑞+1 = 0. We can say that
G/F𝑞 is a “constant field restriction” of F/F𝑞2 . All subfields of the Hermitian function
field F/F𝑞2 are maximal function fields.

Corollary 3.12. If the algebraic function field G/F𝑞 is a constant field restriction of a
maximal function field F/F𝑞2 = G.F𝑞2/F𝑞2 , then G/F𝑞 contains a non-special divisor of
degree 𝑔 − 1.
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3.4 Particular cases : ordinary curves over F2 and F3
The following results treat the particular case of ordinary curves in [3, Section 4].
Let C/𝑘 be a genus 𝑔 (smooth projective absolutely irreducible) curve defind over

a finite field 𝑘 = F𝑝𝑛 . Classically, one defines the 𝑝-rank 𝛾 of this curve as the integer
0 ⩽ 𝛾 ⩽ 𝑔 such that # Jac(C) [𝑝] (𝑘) = 𝑝𝛾 . In particular C is said to be ordinary if 𝛾 = 𝑔.
There is another equivalent characterization in terms of the 𝐿-polynomial, namely
𝛾 = deg (𝐿(𝑡) mod 𝑝), see [16]. In particular, C is ordinary if and only if 𝑝 does not
divide 𝑎𝑔.

Proposition 3.13. Let C be an ordinary curve of genus 𝑔 > 0 over a finite field 𝑘 of
characteristic 2. There is always a non-special divisor of degree 𝑔 − 1 on C.

Proof. Let 𝑓 ∈ 𝑘 (C) such that 𝑑 𝑓 ≠ 0. Developing 𝑓 in power series at any point of
C, we see that 𝑑 𝑓 has only zeros and poles of even multiplicity. Hence there exists a
rational divisor of degree (2𝑔− 2)/2 = 𝑔− 1 such that (𝑑 𝑓 ) = 2𝐷0. It is easy to show that
the class of this divisor does not depend on the choice of 𝑓 and it is called the canonical
theta characteristic divisor. In [26, Prop.3.1], it is shown that there is a bijection between
L(𝐷0) and the space of exact regular differentials (i.e. the regular differentials 𝜔 such
that 𝜔 = 𝑑 𝑓 for 𝑓 ∈ 𝑘 (C)). Now by [22, Prop.8], a regular differential 𝜔 is exact if and
only if C(𝜔) = 0 where C is the Cartier operator. Moreover by [22, Prop.10], Jac(C)
is ordinary if and only if C is bijective. So the only exact regular differential is 0 and
dim(𝐷0) = 0. Hence 𝐷0 is the divisor we were looking for. □

Note, that the previous proof gives a way to explicitly construct a degree 𝑔 − 1
divisor of dimension zero. We will now generalize Proposition 3.13 (and Lemma 3.9)
but without such an explicit construction.

Lemma 3.14. Let F/F𝑞 be a function field of genus 𝑔 and let 𝐿(𝑡) =
∑2𝑔

𝑖=0 𝑎𝑖𝑡
𝑖 be the

numerator of its Zeta function. Then

𝐴𝑔−𝑘 =
1

𝑞 − 1

[
𝑞−𝑘+1

(
ℎ −

𝑔+𝑘−1∑︁
𝑖=0

𝑎𝑖

)
−

𝑔−𝑘∑︁
𝑖=0

𝑎𝑖

]
.

Proof. The proof is similar to Lemma 3.9 (see [3, Lemma 3.6]). □

Proposition 3.15. Let C be a curve of genus 𝑔 > 0 defined over a finite field F𝑞 of
characteristic 𝑝 and of 𝑝-rank 𝛾 . There is always a degree 𝛾 − 1 zero dimension divisor
on C.

Proof. Recall that if ℎ𝑛,𝑘 denotes the number of classes of divisors of degree 𝑛 and of
dimension 𝑘 , for all 𝑔 ⩾ 𝑘 > 0, we get

ℎ =

∞∑︁
𝑖=0

ℎ𝑔−𝑘,𝑖
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so

ℎ𝑔−𝑘,0 = ℎ −
∞∑︁
𝑖=1

ℎ𝑔−𝑘,𝑖 .

Now

𝐴𝑔−𝑘 =

∞∑︁
𝑖=1

𝑞𝑖 − 1
𝑞 − 1 ℎ𝑔−𝑘,𝑖

hence we can write
∞∑︁
𝑖=1

ℎ𝑔−𝑘,𝑖 =
∞∑︁
𝑖=1

𝑞𝑖ℎ𝑔−𝑘,𝑖 − (𝑞 − 1)𝐴𝑔−𝑘 .

Using the expression of 𝐴𝑔−𝑘 from Lemma 3.14 and

ℎ =

𝑔+𝑘−1∑︁
𝑖=0

𝑎𝑖 +
2𝑔∑︁

𝑖=𝑔+𝑘
𝑎𝑖 ≡

𝛾∑︁
𝑖=0

𝑎𝑖 (mod 𝑝)

we get, for 𝑘 = 𝑔 − 𝛾 + 1,

ℎ𝑔−𝑘,0 = ℎ
(
1 + 𝑞−𝑘+1

)
− 𝑞−𝑘+1

𝑔+𝑘−1∑︁
𝑖=0

𝑎𝑖 −
𝑔−𝑘∑︁
𝑖=0

𝑎𝑖 −
∞∑︁
𝑖=1

𝑞𝑖ℎ𝑔−𝑘,𝑖

=

2𝑔∑︁
𝑖=0

𝑎𝑖 + 𝑞−𝑘+1
2𝑔∑︁

𝑖=𝑔+𝑘
𝑎𝑖 −

𝑔−𝑘∑︁
𝑖=0

𝑎𝑖 −
∞∑︁
𝑖=1

𝑞𝑖ℎ𝑔−1,𝑖

=

2𝑔∑︁
𝑖=𝑔−𝑘+1

𝑎𝑖 + 𝑞−𝑘+1
2𝑔∑︁

𝑖=𝑔+𝑘
𝑎𝑖 −

∞∑︁
𝑖=1

𝑞𝑖ℎ𝑔−1,𝑖

≡
𝛾∑︁

𝑖=𝑔−𝑘+1
𝑎𝑖 (mod 𝑝)

≡ 𝑎𝛾 . 0 (mod 𝑝).

Hence ℎ𝛾−1,0 is not zero and hence is positive. □

Remark 3.16. Note that this proposition is interesting only in the case where 𝑞 = 2 and
𝛾 = 𝑔 − 𝑘 with 𝑘 ⩽ 3 or 𝑞 = 3 and 𝛾 = 𝑔.

Corollary 3.17. Let C be an ordinary curve of genus 𝑔 > 0 over a finite field F𝑞 . There is
always a non-special divisor of degree 𝑔 − 1 on C.

3.5 Particular case : Asymptotically exact towers
In this section we adapt the results in [3, Section 5.2] to prove the existence of

non-special divisors of degree 𝑔 − 1 in asymptotically exact towers.
First, let us recall the notion of asymptotically exact sequence of algebraic function

fields introduced in [27].
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Definition 3.18. Consider a sequence F/F𝑞 = (F𝑘/F𝑞)𝑘⩾1 of algebraic function fields
F𝑘/F𝑞 defined over F𝑞 of genus𝑔𝑘 . We suppose that the sequence of genus𝑔𝑘 is an increasing
sequence growing to infinity. The sequence F/F𝑞 is called asymptotically exact if, for all
𝑚 ⩾ 1, the following limit exists:

𝛽𝑚 (F /F𝑞) = lim
𝑔𝑘→∞

𝐵𝑚 (F𝑘/F𝑞)
𝑔𝑘

where 𝐵𝑚 (F𝑘/F𝑞) is the number of places of degree𝑚 on F𝑘/F𝑞 .

Now, let us recall the following two results used by I. Shparlinski, M. Tsfasman and
S. Vladut in [24]. These results follow easily from Corollary 2 and Theorem 6 of [27].

Lemma 3.19. Let F/F𝑞 = (F𝑘/F𝑞)𝑘⩾1 be an asymptotically exact sequence of algebraic
function fields defined over F𝑞 and ℎ𝑘 be the class number of F𝑘/F𝑞 . Then

log𝑞 ℎ𝑘 = 𝑔𝑘

(
1 +

∞∑︁
𝑚=1

𝛽𝑚 · log𝑞
𝑞𝑚

𝑞𝑚 − 1

)
+ 𝑜 (𝑔𝑘 )

Lemma 3.20. Let 𝐴𝑎𝑘 be the number of effective divisors of degree 𝑎𝑘 on F𝑘/F𝑞 . If

𝑎𝑘 ⩾ 𝑔𝑘

( ∞∑︁
𝑚=1

𝑚𝛽𝑚

𝑞𝑚 − 1

)
+ 𝑜 (𝑔𝑘 )

then

log𝑞 𝐴𝑎𝑘 = 𝑎𝑘 + 𝑔𝑘 ·
∞∑︁

𝑚=1
𝛽𝑚 · log𝑞

𝑞𝑚

𝑞𝑚 − 1 + 𝑜 (𝑔𝑘 ).

These asymptotic properties were established in [27] and [28] in order to estimate the
class number ℎ of algebraic function fields of genus 𝑔 defined over F𝑞 and also in order
to estimate their number of classes of effective divisors of degree𝑚 ⩽ 𝑔 − 1. Namely,
I. Shparlinski, M. Tsfasman and S. Vladut used in [24] the inequality 2𝐴𝑔𝑘 (1−𝜀 ) < ℎ𝑘
where 0 < 𝜀 < 1

2 and 𝑘 big enough, under the hypothesis of Lemma 3.19. In the same
spirit, we give here a particular case of their result in the following proposition.

Proposition 3.21. Let F/F𝑞 = (F𝑘/F𝑞)𝑘⩾1 be an asymptotically exact sequence of
algebraic function field defined over F𝑞 . Then, there exists an integer 𝑘0 such that for any
integer 𝑘 ⩾ 𝑘0, we get:

𝐴𝑔𝑘−1 < ℎ𝑘

and there is a non-special divisor of degree 𝑔 − 1 in F𝑘/F𝑞 .

Proof. The total number of linear equivalence classes of an arbitrary degree equals to
the divisor class number ℎ𝑘 of F𝑘/F𝑞 , which is given by Lemma 3.19. Moreover, for 𝑔𝑘
sufficiently large, we have:

∞∑︁
𝑚=1

𝑚𝛽𝑚

𝑞𝑚 − 1 ⩽
1

√
𝑞 + 1

∞∑︁
𝑚=1

𝑚𝛽𝑚

𝑞
𝑚
2 − 1

<
1
2
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since 𝑞 ⩾ 2 and
∑∞

𝑚=1
𝑚𝛽𝑚

𝑞
𝑚
2 −1

⩽ 1 by Corollary 1 of [27]. As 1
𝑔𝑘

< 1
2 , one has

𝑔𝑘

(
1 − 1

𝑔𝑘

)
⩾ 𝑔𝑘

( ∞∑︁
𝑚=1

𝑚𝛽𝑚

𝑞𝑚 − 1

)
+ 𝑜 (𝑔𝑘 )

for 𝑘 big enough. Therefore, we can apply Lemma 3.20 and compare log𝑞 𝐴𝑔𝑘 (1−1/𝑔𝑘 )
with log𝑞 ℎ𝑘 given by Lemma 3.19. Hence, there exists an integer 𝑘0 such that for 𝑘 ⩾ 𝑘0,
𝐴𝑔𝑘−1 < ℎ𝑘 . We conclude by Proposition 3.2. □

3.6 Particular case : curves of defect 𝒌 over F2 and F3
In this section, we will focus on curves over F2 and F3 of genus 𝑔 ⩾ 3. The existence

of non-special divisors of degree 𝑔− 1 is assured for 𝑞 ⩾ 4, moreover, the cases of curves
of genus 𝑔 = 1, 2 were studied in the introduction of section 3.3 and Theorem 3.8. The
goal is to give some examples of function fields that contain these divisors.

For 𝑟 ⩾ 1, consider the number

𝑁𝑟 := 𝑁 (F𝑟 ) = #
{
𝑃 ∈ P(F𝑟/F𝑞𝑟 ) : deg(𝑃) = 1

}
where F𝑟 = FF𝑞𝑟 is the constant field extension of F/F𝑞 of degree 𝑟 . Let us remind the
equation from [25, Corollary 5.1.16]: for all 𝑟 ⩾ 1, we have

𝑁𝑟 = 𝑞
𝑟 + 1 −

2𝑔∑︁
𝑖=1

𝛼𝑟𝑖 = 𝑞𝑟 + 1 −
𝑔∑︁
𝑖=1

2𝑞𝑟/2𝑐𝑜𝑠 (𝜋𝑟𝜙𝑖 ) (10)

where (𝛼1, . . . , 𝛼2𝑔) = (𝑞1/2𝑒𝑖𝜋𝜙1 , . . . , 𝑞1/2𝑒𝑖𝜋𝜙𝑔 , 𝑞1/2𝑒−𝑖𝜋𝜙1 , . . . , 𝑞1/2𝑒−𝑖𝜋𝜙𝑔 ) are the recip-
rocals of the roots of 𝐿(𝑡) with 𝜙𝑖 ∈ [0, 1]. In particular, since 𝑁1 = 𝑁 (F), we have

𝑁 (F) = 𝑞 + 1 −
2𝑔∑︁
𝑖=1

𝛼𝑖 .

Proposition 3.22 ([25, Corollary 5.1.17]). Let 𝐿(𝑡) = ∑2𝑔
𝑖=0 𝑎𝑖𝑡

𝑖 be the 𝐿-polynomial of
F/F𝑞 , and 𝑆𝑟 := 𝑁𝑟 − (𝑞𝑟 + 1). Then we have:

(a) 𝐿′ (𝑡)/𝐿(𝑡) = ∑∞
𝑟=1 𝑆𝑟 𝑡

𝑟−1.

(b) 𝑎0 = 1 and
𝑖𝑎𝑖 = 𝑆𝑖𝑎0 + 𝑆𝑖−1𝑎1 + · · · + 𝑆1𝑎𝑖−1 (11)

for 𝑖 = 1, . . . , 𝑔.

Given 𝑁1, . . . , 𝑁𝑔 and using 𝑎2𝑔−𝑖 = 𝑞𝑔−𝑖𝑎𝑖 , we can determine 𝐿(𝑡) from (11).

Let F be an algebraic function field over F2 or F3 of genus 𝑔, and 𝑘 its defect, i.e.,

|𝑁1 (F/F2) − (𝑞 + 1) | = 𝑔
[
2√𝑞

]
− 𝑘
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where [𝑥] denotes the largest integer ⩽ 𝑥 . Let

𝐿(𝑡) =
2𝑔∑︁
𝑖=0

𝑎𝑖𝑡
𝑖 =

𝑔∏
𝑖=1

[(1 − 𝛼𝑖𝑡) (1 − 𝛼𝑖𝑡)]

be the numerator of the Zeta function of F. Recall that with the previous conditions,
one has ��𝑁1 (F/F𝑞) − (𝑞 + 1)

�� = �����− 2𝑔∑︁
𝑖=1

𝛼𝑖

����� = 𝑔 [
2√𝑞

]
− 𝑘

and then

𝑘 = 𝑔
[
2√𝑞

]
−

����� 2𝑔∑︁
𝑖=1

𝛼𝑖

����� . (12)

We know that, if 𝑁1 ⩾ 𝑔 + 1, there exists a non-special divisor of degree 𝑔 − 1.
Moreover we know all the curves which contain this kind of divisors over F2 for 𝑔 = 1
and 2. Since for defect-2 curves over F2 with 𝑔 ⩾ 3 one has

|𝑁1 − 3| = 2𝑔 − 2 =⇒ 𝑁1 = 2𝑔 + 1 =⇒ 𝑁1 ⩾ 𝑔 + 1,

the existence of these divisors is obvious and we do not need to use the coefficients
𝑎𝑛 for this purpose. Nevertheless, for a defect 𝑘 ⩾ 3 curves over F2 and F3 (𝑞 = 2 or 3,
hence

[
2√𝑞

]
= 𝑞 ), one has

|𝑁1 − (𝑞 + 1) | = 𝑞𝑔 − 𝑘 =⇒ 𝑁1 = −𝑞𝑔 + 𝑘 + 𝑞 + 1 or 𝑁1 = 𝑞𝑔 − 𝑘 + 𝑞 + 1.

The goal of this section is to prove the existence of non-special divisor of degree 𝑔 − 1
for curves that satisfy

0 ⩽ 𝑁1 = −𝑞𝑔 + 𝑘 + 𝑞 + 1 ⩽ 𝑔 or 0 ⩽ 𝑁1 = 𝑞𝑔 − 𝑘 + 𝑞 + 1 ⩽ 𝑔. (13)

The following results generalize the cases (a) and (d) of [23, Theorem 2.5.1] by
J.-P. Serre and will help us determine the sign of 𝑎𝑔 + 2

∑𝑔−1
𝑖=0 𝑎𝑖 (in order to apply 3.10).

Lemma 3.23. Let 𝛼 be a totally positive algebraic integer and k(𝛼) =𝑇𝑟 (𝛼) −𝑑 (𝛼) (recall
that 𝑇𝑟 (𝛼) is the sum of the conjugates of 𝛼 , it is totally positive if all its conjugates are
real > 0, that 𝑑 (𝛼) is the degree of its minimal polynomial and 𝑇𝑟 (𝛼) ⩾ 𝑑 (𝛼) (see [23,
Remark 2.2.3])). One has:

• If k(𝛼) = 0, then 𝛼 = 1.

• If 𝑑 (𝛼) = 1, then 𝛼 = k(𝛼) + 1.

• If 𝑑 (𝛼) = 2, then 𝛼 =
k(𝛼 )+2±

√
(k(𝛼 )+2)2−4𝑛
2 with (k(𝛼 )+2)2

4 > 𝑛.

Proof. • For the case k(𝛼) = 0 see [23, Corollary 2.2.4].
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• If 𝑑 (𝛼) = 1, then the minimal polynomial of 𝛼 is 𝑥 − 𝑇𝑟 (𝛼) and 𝛼 = 𝑇𝑟 (𝛼), we
conclude that k(𝛼) =𝑇𝑟 (𝛼) − 1 = 𝛼 − 1.

• If 𝑑 (𝛼) = 2, then the minimal polynomial of 𝛼 is 𝑥2 −𝑇𝑟 (𝛼)𝑥 + 𝑛 = 𝑥2 − (k(𝛼) +
2)𝑥 +𝑛 with real positive roots, namely k(𝛼 )+2±

√
(k(𝛼 )+2)2−4𝑛
2 only if (k(𝛼 )+2)2

4 > 𝑛.
□

Theorem 3.24. For a curve over F𝑞 such that
��𝑁1 (F/F𝑞) − (𝑞 + 1)

�� = 𝑔 [
2√𝑞

]
− 𝑘 with

𝑔 ⩾ 2, one has

(a) For 3 ⩽ 𝑘 ⩽ 2 ·
[
2√𝑞

]
, if there exists 𝑖 ∈ {1, . . . , 𝑔} such that 𝛼𝑖 + 𝛼𝑖 =

[
2√𝑞

]
− 𝑘 ,

then we can reorganize the tuple (𝛼1 + 𝛼1, . . . , 𝛼𝑔 + 𝛼𝑔) to get

(𝛼1 + 𝛼1, . . . , 𝛼𝑔 + 𝛼𝑔) = ±
( [

2√𝑞
]
, . . . ,

[
2√𝑞

]
,
[
2√𝑞

]
− 𝑘

)
(b) If there exist 𝑖, 𝑗 ∈ {1, . . . , 𝑔} such that

[
2√𝑞

]
+ 1−𝛼𝑖 −𝛼𝑖 and

[
2√𝑞

]
+ 1−𝛼 𝑗 −𝛼 𝑗

are conjugate with 𝑑
( [

2√𝑞
]
+ 1 − 𝛼𝑖 − 𝛼𝑖

)
= 2 and

𝛼𝑖 + 𝛼𝑖 + 𝛼 𝑗 + 𝛼 𝑗 = 2
[
2√𝑞

]
− 𝑘

then we can reorganize the tuple (𝛼1 + 𝛼1, . . . , 𝛼𝑖 + 𝛼𝑖 , . . . , 𝛼𝑔 + 𝛼𝑔) to get

(𝛼1 + 𝛼1, . . . , 𝛼𝑔 + 𝛼𝑔)

= ±
( [

2√𝑞
]
, . . . ,

[
2√𝑞

]
,
[
2√𝑞

]
+ 1 − 𝑘 + 2 + Δ

2 ,
[
2√𝑞

]
+ 1 − 𝑘 + 2 − Δ

2

)
with Δ =

√︁
(𝑘 + 2)2 − 4𝑛 and (𝑘+2)2

4 > 𝑛.

This holds for −2
(
2√𝑞 −

[
2√𝑞

] )
⩽ 𝑘 ± Δ ⩽ 4√𝑞 + 2

[
2√𝑞

]
.

Proof. It is enough to prove the proposition in the case 𝑁1 (F/F𝑞) − (𝑞+1) = 𝑔
[
2√𝑞

]
−𝑘

which means 𝑘 = 𝑔
[
2√𝑞

]
− ∑2𝑔

𝑖=1 𝛼𝑖 by (12).
Let 𝜅 : Z[𝑋 ] → Z be the map defined by

𝜅
(
𝑏0𝑋

𝑛 − 𝑏1𝑋
𝑛−1 + . . . + 𝑏𝑛

)
= 𝑏1 − 𝑛

and 𝑃 ∈ Z[𝑋 ] be the polynomial

𝑃 (𝑋 ) = 𝑋𝑔 − 𝑎1𝑋
𝑔−1 + . . . + 𝑎𝑔 =

𝑔∏
𝑖=1

(
𝑋 −

[
2√𝑞

]
− 1 + 𝛼𝑖 + 𝛼𝑖

)
;

its roots are real and positive since
[
2√𝑞

]
+ 1 ⩾ 𝛼𝑖 + 𝛼𝑖 = 2√𝑞 · 𝑐𝑜𝑠 (𝜋𝜙𝑖 ) with 𝜋𝜙𝑖 the

argument of 𝛼𝑖 . Then we have

𝜅 (𝑃 (𝑋 )) =
𝑔∑︁
𝑖=1

( [
2√𝑞

]
+ 1 − 𝛼𝑖 − 𝛼𝑖

)
− 𝑔 = 𝑔

[
2√𝑞

]
+ 𝑔 −

𝑔∑︁
𝑖=1

(𝛼𝑖 + 𝛼𝑖 ) − 𝑔 = 𝑘.
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Now, let 𝑃 (𝑋 ) = ∏𝑟
𝜆=1𝑄𝜆 (𝑋 ) =

∏𝑟
𝜆=1

(
𝑋 deg(𝑄𝜆 ) − 𝑎1,𝜆𝑋

deg(𝑄𝜆 )−1 + . . .
)

be the decom-
position of 𝑃 as a product of irreducible polynomials. We have

𝑎1 =
𝑟∑︁

𝜆=1
𝑎1,𝜆 and 𝑎1 − 𝑔 =

𝑟∑︁
𝜆=1

𝑎1,𝜆 −
𝑟∑︁

𝜆=1
deg(𝑄𝜆);

thus

𝜅 (𝑃 (𝑋 )) =
𝑟∑︁

𝜆=1
𝜅 (𝑄𝜆 (𝑋 )) = 𝑘. (14)

(a) Let 𝑖 ∈ {1, . . . , 𝑔} be such that𝛼𝑖+𝛼𝑖 =
[
2√𝑞

]
−𝑘 , then

[
2√𝑞

]
+1−𝛼𝑖−𝛼𝑖 ∈ Zwhich

means that there exists 𝜆′ ∈ {1, . . . , 𝑟 } such that𝑄𝜆′ (𝑋 ) = 𝑋 −
[
2√𝑞

]
− 1+𝛼𝑖 +𝛼𝑖 .

Thus𝑑
( [

2√𝑞
]
+ 1 − 𝛼𝑖 − 𝛼𝑖

)
= 1 and Tr

( [
2√𝑞

]
+ 1 − 𝛼𝑖 − 𝛼𝑖

)
=

[
2√𝑞

]
+1−𝛼𝑖−𝛼𝑖 .

By (14), we have

𝜅 (𝑃 (𝑋 )) =
𝑟∑︁

𝜆=1
𝜅 (𝑄𝜆 (𝑋 ))

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 𝜅
(
𝑄𝜆′ (𝑋 )

)
=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) +
[
2√𝑞

]
+ 1 − 𝛼𝑖 − 𝛼𝑖 − 1

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) +
[
2√𝑞

]
−

[
2√𝑞

]
+ 𝑘

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 𝑘 = 𝑘.

Notice that if
[
2√𝑞

]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗 is a root of 𝑄𝜆 where 𝜆 ≠ 𝜆′ then, with the

notation of Lemma 3.23, one has

𝜅 (𝑄𝜆 (𝑋 )) = Tr
( [

2√𝑞
]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗

)
− 𝑑

( [
2√𝑞

]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗

)
= k

( [
2√𝑞

]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗

)
⩾ 0

We conclude that 𝜅 (𝑄𝜆 (𝑋 )) = k
( [

2√𝑞
]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗

)
= 0 for 𝜆 ≠ 𝜆′. By

Lemma 3.23, one has
[
2√𝑞

]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗 = 1 thus

[
2√𝑞

]
= 𝛼 𝑗 + 𝛼 𝑗 for

𝑗 ≠ 𝑖 and, by assumption, 𝛼𝑖 + 𝛼𝑖 =
[
2√𝑞

]
− 𝑘 . Finally, the argument 𝜃𝑖 with

2√𝑞 · 𝑐𝑜𝑠 (𝜃𝑖 ) = 𝛼𝑖 + 𝛼𝑖 =
[
2√𝑞

]
− 𝑘 exists if 0 ⩽ 𝑘 ⩽ 2 ·

[
2√𝑞

]
. We are inter-

ested, here, by 3 ⩽ 𝑘 ⩽ 2 · [2√𝑞] since the cases 0, 1 and 2 were studied in [23,
Theorem 2.5.1].
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(b) Let 𝛽𝑖 =
[
2√𝑞

]
+ 1 − 𝛼𝑖 − 𝛼𝑖 and 𝛽 𝑗 =

[
2√𝑞

]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗 .

There exists 𝜆′ ∈ {1, . . . , 𝑟 } such that

𝑄𝜆′ (𝑋 ) = 𝑋 2 − 𝑎1,𝜆′𝑋 + 𝑎2,𝜆′ with
𝑎1,𝜆′ = Tr(𝛽𝑖 ) = Tr(𝛽 𝑗 ) = 2

[
2√𝑞

]
+ 2 − 𝛼𝑖 − 𝛼𝑖 − 𝛼 𝑗 − 𝛼 𝑗

By (14), one has

𝜅 (𝑃 (𝑋 )) =
𝑟∑︁

𝜆=1
𝜅 (𝑄𝜆 (𝑋 ))

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 𝜅
(
𝑄𝜆′ (𝑋 )

)
=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 2
[
2√𝑞

]
+ 2 − 𝛼𝑖 − 𝛼𝑖 − 𝛼 𝑗 − 𝛼 𝑗 − 2

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 2
[
2√𝑞

]
− 2

[
2√𝑞

]
+ 𝑘

=

𝑟∑︁
𝜆=1
𝜆≠𝜆′

𝜅 (𝑄𝜆 (𝑋 )) + 𝑘 = 𝑘.

As in (a), we conclude that 𝜅 (𝑄𝜆 (𝑋 )) = k
( [

2√𝑞
]
+ 1 − 𝛼 𝑗 − 𝛼 𝑗

)
= 0 for 𝜆 ≠ 𝜆′

and since 𝑑 (𝛽𝑖 ) = 𝑑 (𝛽 𝑗 ) = 2, by Lemma 3.23 one has

𝛽𝑖 =
k(𝛽𝑖 ) + 2 −

√︁
(k(𝛽𝑖 ) + 2)2 − 4𝑛
2 =

𝑘 + 2 +
√︁
(𝑘 + 2)2 − 4𝑛
2

and

𝛽 𝑗 =
k(𝛽 𝑗 ) + 2 −

√︁
(k(𝛽 𝑗 ) + 2)2 − 4𝑛
2 =

𝑘 + 2 −
√︁
(𝑘 + 2)2 − 4𝑛
2

thus 𝛼𝑖 + 𝛼𝑖 =
[
2√𝑞

]
+ 1 − 𝑘+2+Δ

2 and 𝛼 𝑗 + 𝛼 𝑗 =
[
2√𝑞

]
+ 1 − 𝑘+2−Δ

2 .
Finally, the arguments 𝜃𝑖 , 𝜃 𝑗 with 2√𝑞 ·𝑐𝑜𝑠 (𝜃𝑖 ) = 𝛼𝑖+𝛼𝑖 and 2√𝑞 ·𝑐𝑜𝑠 (𝜃 𝑗 ) = 𝛼 𝑗 +𝛼 𝑗

exist if

−1 ⩽
[2√𝑞] + 1 − 𝑘+2±Δ

2

2
√

2
⩽ 1

which means
−2(2√𝑞 − [2√𝑞]) ⩽ 𝑘 ± Δ ⩽ 4√𝑞 + 2[2√𝑞] .

□
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𝑞 𝑔 𝑘 E𝑔−1

2 3 3 True
2 3 4 True
3 3 5 True
3 3 6 True

Table 3: Whether specific function fields admit a non-special divisor of degree 𝑔 − 1.

Remark 3.25. The conditions of Theorem 3.24 are too constraining but they describe
possibly infinitely many curves if we refer to [23, Theorem 2.4.1].

Theorem 3.26. Let
{
𝛼1 + 𝛼1, . . . , 𝛼𝑔 + 𝛼𝑔

}
be a set of algebraic integers. Suppose that the

polynomial
∏𝑔

𝑖=1 (𝑋 − 𝛼𝑖 − 𝛼𝑖 ) can be factored as 𝑃1 ·𝑃2 such that 𝑃1 and 𝑃2 are monic, non
constant polynomials in Z[𝑋 ] and their resultant is equal to 1 or −1. Then the (𝛼𝑖 )1⩽𝑖⩽𝑔
can not come from a curve.

Now, we have enough information to calculate the sum 𝑎𝑔 + 2
∑𝑔−1

𝑖=0 𝑎𝑖 using (10) and
Proposition 3.22, in order to apply Corollary 3.10. Therefore, under the conditions of
(13), case (a) of Theorem 3.24, and Theorem 3.26, we can build Table 3.

Furthermore, under the conditions of (13), case (b) of Theorem 3.24, and Theorem 3.26,
we can build Table 4.

In the table provided, we present the signs of the sum 𝑎𝑔 + 2
∑𝑔−1

𝑖=0 𝑎𝑖 for curves with
defect 𝑘 > 2. These results were obtained through direct computation, without a formal
proof. However, it is worth noting that these signs can be theoretically established
using the same method developed in [11] for curves with defect 2. That method relies
on an explicit form of the coefficients of the L-polynomial, which provides a rigorous
framework for extending these results to higher defect values, should one wish to pursue
a theoretical proof.

4 Construction of non-special divisors of degree 𝒈 and
𝒈 − 1

In this section, we focus on constructing non-special divisors of degrees 𝑔 and
𝑔 − 1 in different contexts. We divide the section into three examples to show how the
methods can be applied. The first example looks at Kummer extensions and Hermitian
curves, where we use their specific algebraic properties to build the divisors. The second
example works with an asymptotically good tower, showing how the construction
benefits from the tower’s properties. Finally, the third example deals with a case where
the curve has a large number of points, which makes the construction easier.
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𝑞 𝑔 𝑘 𝑛 E𝑔−1

2 3 3 1 False
2 3 3 2 True
2 3 3 4 True
2 3 3 6 False
2 3 4 1 True
2 3 4 2 False
2 3 4 3 False
2 3 4 5 True
2 3 4 7 True
2 3 4 8 True
2 3 4 9 True
2 3 5 8 True
2 4 5 8 True
2 3 5 9 True
2 4 5 9 True
2 3 5 10 True
2 4 5 10 True
2 3 5 11 True
2 4 5 11 True
2 3 5 12 True
2 4 5 12 True
2 3 6 13 True
2 4 6 13 True
2 3 6 14 True
2 4 6 14 True
2 3 6 15 True
2 4 6 15 True
2 3 6 16 True
2 4 6 16 True
2 3 7 19 True
2 4 7 19 True
2 5 7 19 True
2 3 7 20 True

𝑞 𝑔 𝑘 𝑛 E𝑔−1

2 5 8 25 True
2 4 7 20 True
2 5 7 20 True
2 3 8 25 True
2 4 8 25 True
3 3 5 4 True
3 3 5 6 True
3 3 5 8 True
3 3 5 9 False
3 3 5 10 False
3 3 5 11 False
3 3 5 12 False
3 3 6 4 False
3 3 6 5 False
3 3 6 7 True
3 3 6 9 True
3 3 6 10 True
3 3 6 11 True
3 3 6 12 True
3 3 6 13 True
3 3 6 14 True
3 3 6 15 True
3 3 6 16 True
3 3 7 12 False
3 3 7 13 False
3 3 7 14 False
3 3 7 15 False
3 3 7 16 True
3 3 7 17 True
3 3 7 18 True
3 3 7 19 True
3 3 7 20 True
3 3 8 19 True

𝑞 𝑔 𝑘 𝑛 E𝑔−1

3 4 8 23 True
3 4 8 19 True
3 3 8 20 False
3 4 8 20 False
3 3 8 21 True
3 4 8 21 True
3 3 8 22 True
3 4 8 22 True
3 3 8 23 True
3 3 8 24 True
3 4 8 24 True
3 3 8 25 True
3 4 8 25 True
3 3 9 27 True
3 4 9 27 True
3 3 9 28 False
3 4 9 28 False
3 3 9 29 True
3 4 9 29 True
3 3 9 30 True
3 4 9 30 True
3 3 10 34 True
3 4 10 34 True
3 3 10 35 True
3 4 10 35 True
3 3 10 36 True
3 4 10 36 True
3 3 11 42 True
3 4 11 42 True
3 5 11 42 True
3 3 12 49 True
3 4 12 49 True
3 5 12 49 True

Table 4: Whether specific function fields admit a non-special divisor of degree 𝑔 − 1
where 𝑔 is the genus, 𝑘 the defect and 𝑛 the integer defined in Lemma 3.23.
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4.1 Example on Kummer extension and hermitian curves
This subsection presents the work of E. Camps Moreno, H. H. Lopez and G. L.

Matthews in [17] which is based on the Weierstrass semigroup to find the explicit form
of non-special divisors of degree 𝑔 and 𝑔 − 1 on Kummer extensions and Hermitian
curves.

For a curve C defined by 𝑓 (𝑦) = 𝑔(𝑥) over a finite field F𝑞 , we denote 𝑃𝑎𝑏 a point on
C corresponding to 𝑥 = 𝑎 and 𝑦 = 𝑏. If C has a unique point at infinity, we denote it
by 𝑃∞.

We say that a divisor 𝐴 is supported by a point 𝑃 ∈ C if and only if 𝑣𝑃 (𝐴) ≠ 0.
Consider𝑚 distinct rational points 𝑃1, . . . , 𝑃𝑚 on a curve C. The Weierstrass semi-

group associated with the𝑚-tuple of points is defined as the set of all tuples 𝛼 ∈ N𝑚 for
which there exists a function 𝑓 ∈ C(F𝑞) such that the pole divisor of 𝑓 satisfies

(𝑓 )∞ =

𝑚∑︁
𝑖=1

𝛼𝑖𝑃𝑖 .

We denote this semigroup by

𝐻 (𝑃1, . . . , 𝑃𝑚) :=
{
𝛼 ∈ N𝑚 : ∃𝑓 ∈ C(F𝑞) with (𝑓 )∞ =

𝑚∑︁
𝑖=1

𝛼𝑖𝑃𝑖

}
.

An equivalent characterization of 𝛼 ∈ 𝐻 (𝑃1, . . . , 𝑃𝑚) is that

dim
(
𝑚∑︁
𝑖=1

𝛼𝑖𝑃𝑖

)
= dim

(
𝑚∑︁
𝑖=1

𝛼𝑖𝑃𝑖 − 𝑃 𝑗

)
+ 1

for all 𝑗 such that 1 ⩽ 𝑗 ⩽ 𝑚. The complement of 𝐻 (𝑃1, . . . , 𝑃𝑚) in N𝑚 is called the set
of Weierstrass gaps and denoted by

𝐺 (𝑃1, . . . , 𝑃𝑚) := N𝑚 \ 𝐻 (𝑃1, . . . , 𝑃𝑚).

A key quantity associated with the semigroup 𝐻 (𝑃) for a single point 𝑃 ∈ C(F𝑞) is
its multiplicity

𝛾 (𝐻 (𝑃)) := min{𝑎 : 𝑎 ∈ 𝐻 (𝑃) \ {0}}.

To study the structure of 𝐻 (𝑃1, . . . , 𝑃𝑚), we introduce a partial order on N𝑚 . For
tuples (𝑛1, . . . , 𝑛𝑚) and (𝑝1, . . . , 𝑝𝑚), we define

(𝑛1, . . . , 𝑛𝑚) ⪯ (𝑝1, . . . , 𝑝𝑚) ⇐⇒ 𝑛𝑖 ⩽ 𝑝𝑖 for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝑚.

The semigroup for each individual point 𝑃𝑖 is denoted by Γ+ (𝑃𝑖 ) := 𝐻 (𝑃𝑖 ). For 𝑙 ⩾ 2,
we extend this to multiple points as

Γ+ (𝑃1, . . . , 𝑃𝑚) :=
{
𝑣 ∈ Z+𝑙 :

𝑣 is minimal in {𝑤 ∈ 𝐻 (𝑃𝑖1 , . . . , 𝑃𝑖𝑙 ) : 𝑣𝑖 =𝑤𝑖 }
for some 𝑖, 1 ⩽ 𝑖 ⩽ 𝑙

}
.
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Given a subset 𝐼 ⊆ {1, . . . ,𝑚} of cardinality 𝑙 , the natural inclusion 𝜄𝐼 : N𝑙 → N𝑚

maps to coordinates indexed by 𝐼 . The minimal generating set of 𝐻 (𝑃1, . . . , 𝑃𝑚) is then

Γ(𝑃1, . . . , 𝑃𝑚) :=
𝑚⋃
𝑙=1

⋃
𝐼={𝑖1,...,𝑖𝑙 }
𝑖1<· · ·<𝑖𝑙

𝜄𝐼
(
Γ+ (𝑃𝑖1 , . . . , 𝑃𝑖𝑙 )

)
.

Finally, the semigroup 𝐻 (𝑃1, . . . , 𝑃𝑚) can be reconstructed entirely from its minimal
generating set Γ(𝑃1, . . . , 𝑃𝑚). When 1 ⩽ 𝑚 < #F𝑞 , we have

𝐻 (𝑃1, . . . , 𝑃𝑚) = {lub{𝑣1, . . . , 𝑣𝑚} : 𝑣1, . . . , 𝑣𝑚 ∈ Γ(𝑃1, . . . , 𝑃𝑚)} (15)

where the least upper bound is defined as

lub
{
𝑣 (1) , . . . , 𝑣 (𝑡 )

}
:=

(
max

{
𝑣
(1)
1 , . . . , 𝑣

(𝑡 )
1

}
, . . . ,max

{
𝑣
(1)
𝑛 , . . . , 𝑣

(𝑡 )
𝑛

})
.

Proposition 4.1 is the most important result of this subsection, as it provides a
fundamental criterion for proving the non-speciality of divisors. This proposition will
be repeatedly used throughout to demonstrate the non-speciality of various constructed
divisors.

Proposition 4.1. Let 𝐴 =
∑𝑚

𝑖=1 𝛼𝑖𝑃𝑖 be an effective divisor of degree 𝑔. If 𝛾 ⩽̸ 𝛼 for all
𝛾 ∈ Γ(𝑃1, . . . , 𝑃𝑚), then 𝐴 is non-special.

Proof. Let 𝐴 =
∑𝑚

𝑖=1 𝛼𝑖𝑃𝑖 ∈ D(F/F𝑞) be an effective divisor such that
∑𝑚

𝑖=1 𝛼𝑖 = 𝑔.
Assume that 𝐴 is special. This means that dim(𝐴) > deg(𝐴) + 1 − 𝑔 = 1, which implies
dim(𝐴) ⩾ 2. By definition of special divisors, there exists𝑤 ∈ 𝐻 (𝑃1, . . . , 𝑃𝑚) satisfying
𝑤 ⩽ 𝛼 .

From (15), the Weierstrass semigroup 𝐻 (𝑃1, . . . , 𝑃𝑚) is generated by the elements of
Γ(𝑃1, . . . , 𝑃𝑚). Hence,𝑤 can be expressed as the least upper bound of some 𝑣1, . . . , 𝑣𝑚 ∈
Γ(𝑃1, . . . , 𝑃𝑚). Specifically, there exist 𝑣1, . . . , 𝑣𝑚 ∈ Γ(𝑃1, . . . , 𝑃𝑚) such that:

𝑣1 ⩽ 𝑙𝑢𝑏{𝑣1, . . . , 𝑣𝑚} =𝑤 ⩽ 𝛼.

The contrapositive of this reasoning shows that if no such𝑤 ⩽ 𝛼 exists in𝐻 (𝑃1, . . . , 𝑃𝑚),
then 𝐴 cannot be special. This completes the proof. □

The following proposition provides the properties of the first example of function
fields, which will serve as the foundation for constructing the desired divisors.

Proposition 4.2. Let F/F𝑞 (𝑦) be the Kummer extension defined by

𝑥𝑚 =

𝑟∏
𝑖=1

(𝑦 − 𝛼𝑖 )

and let 𝑃𝑖 the place associated with 𝑦 − 𝛼𝑖 . Then

Γ+ (𝑃1) = N \
{
𝑚𝑘 + 𝑗 : 1 ⩽ 𝑗 ⩽ 𝑚 − 1 −

⌊𝑚
𝑟

⌋
, 0 ⩽ 𝑘 ⩽ 𝑟 − 2 −

⌊
𝑟 𝑗

𝑚

⌋}
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and, for 2 ⩽ 𝑙 ⩽ 𝑟 −
⌊
𝑟
𝑚

⌋
, the semigroup Γ+ (𝑃1, . . . , 𝑃𝑙 ) is given by{

(𝑚𝑠1 + 𝑗, . . . ,𝑚𝑠𝑙 + 𝑗) : 1 ⩽ 𝑗 ⩽ 𝑚 − 1
⌊𝑚
𝑟

⌋
, 𝑠𝑖 ⩾ 0,

𝑙∑︁
𝑖=1

𝑠𝑖 = 𝑟 − 𝑙 −
⌊
𝑟 𝑗

𝑚

⌋}
.

Proof. See [7, Theorem 3.2 ] and [10, Theorem 10]. □

The following lemma will ensure that the divisor defined in 4.4 has degree 𝑔.

Lemma 4.3. Let 𝑟,𝑚 ∈ Z+ be relatively prime.

1. Let 1 ⩽ 𝑗 ⩽ 𝑚 − 1 and set 𝑡 = 𝑟 mod𝑚. Then⌊
𝑟 ( 𝑗 + 1)
𝑚

⌋
−

⌊
𝑟 𝑗

𝑚

⌋
=

{⌊
𝑟
𝑚

⌋
+ 1 if 𝑗 =

⌊
𝑘𝑚
𝑡

⌋
with 1 ⩽ 𝑘 ⩽ 𝑡 − 1,⌊

𝑟
𝑚

⌋
otherwise.

2. If 𝑡 < 𝑚, then
𝑡−1∑︁
𝑘=1

⌊
𝑘𝑚

𝑡

⌋
=

(𝑚 − 1) (𝑡 − 1)
2 .

Proof. See [17, Lemma 7]. □

Theorem 4.4. Let F/F𝑞 (𝑦) by the Kummer extension defined by

𝑥𝑚 =

𝑟∏
𝑖=1

(𝑦 − 𝛼𝑖 )

where 𝛼𝑖 ∈ F𝑞 and (𝑟,𝑚) = 1. For 1 ⩽ 𝑗 ⩽ 𝑚 − 1 −
⌊
𝑚
𝑟

⌋
, define the following values:

• 𝑙 𝑗 = 𝑟 −
⌊
𝑟 𝑗

𝑚

⌋
.

• 𝑠 𝑗 = 𝑙 𝑗 − 𝑙 𝑗+1 if 𝑗 < 𝑚 − 1 −
⌊
𝑚
𝑟

⌋
and 𝑠𝑚−1−⌊𝑚

𝑟 ⌋ = 𝑙𝑚−1−⌊𝑚
𝑟 ⌋ − 1 = max

{
1,

⌊
𝑚
𝑟

⌋}
.

Then 𝐴 is an effective non-special divisor of degree 𝑔 with support contained in the set{
𝑃0𝑏 :

∏𝑟
𝑖=1 (𝑏 − 𝛼𝑖 ) = 0

}
if and only if

𝐴 =

𝑚−1−⌊𝑚
𝑟 ⌋∑︁

𝑗=1
𝑗

𝑠 𝑗∑︁
𝑖=1

𝑃0𝑏 𝑗𝑖
.

In particular, if 𝑟 < 𝑚,

𝐴 =

𝑟−1∑︁
𝑗=1

⌊
𝑗𝑚

𝑟

⌋
𝑃0𝑏 𝑗

.
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Proof. The argument combines explicit calculations of deg(𝐴), where Lemma 4.3 is used
to show that deg(𝐴) = 𝑔, and properties of the Weierstrass semigroup (via Proposi-
tion 4.1), which ensure that 𝐴 is non-special. For the remainder of the proof, we start
with an effective non-special divisor 𝐵 of degree 𝑔− 1 and demonstrate that its structure
must satisfy the required form. Specifically, we prove that 𝐵 can be decomposed as
𝐵 =

∑𝛾

𝑗=1 𝑗𝐷 𝑗 (with 𝛾 =𝑚− 1−
⌊
𝑚
𝑟

⌋
), where each 𝐷 𝑗 is either zero or the sum of distinct

rational places of degree 1, ensuring disjoint supports across 𝑗 . This will guarantee that
𝐵 aligns with the desired construction, even in the case where 𝑟 < 𝑚.

We start by observing that

𝐴 =

𝑚−1−⌊𝑚
𝑟 ⌋∑︁

𝑗=1
𝑗𝐷 𝑗 =

𝑚−1−⌊𝑚
𝑟 ⌋∑︁

𝑗=1
𝑗

𝑠 𝑗∑︁
𝑖=1

𝑃0𝑏 𝑗𝑖
,

where each 𝐷 𝑗 is defined as

𝐷 𝑗 =

{∑𝑠 𝑗
𝑖=1 𝑃0𝑏 𝑗𝑖

if 𝑠 𝑗 > 0,
0 if 𝑠 𝑗 = 0,

for 1 ⩽ 𝑗 ⩽ 𝑚 − 1 −
⌊
𝑚
𝑟

⌋
. Our goal is to show that 𝐴 has degree 𝑔. Let 𝑡 = 𝑟 mod𝑚.

Then

deg(𝐴) =
𝑚−1−⌊𝑚

𝑟 ⌋∑︁
𝑖=1

𝑗𝑠 𝑗

=

𝑚−1∑︁
𝑖=1

𝑗

⌊ 𝑟
𝑚

⌋
+

𝑡−1∑︁
𝑘=1

⌊
𝑘𝑚

𝑡

⌋
(Lemma 4.3, part (1))

=
(𝑚 − 1)𝑚

2

⌊ 𝑟
𝑚

⌋
+ (𝑚 − 1) (𝑡 − 1)

2 (Lemma 4.3, part (2))

=
(𝑚 − 1)

2

(
𝑚

⌊ 𝑟
𝑚

⌋
+ 𝑡 − 1

)
=

(𝑚 − 1) (𝑟 − 1)
2

= 𝑔

Next, we prove that 𝐴 is non-special using Proposition 4.1. Let 𝑣 ∈ N𝑙1−1 such that:

𝐴 =

𝑙1−1∑︁
𝑖=1

𝑣𝑖𝑃𝑖 .

Since 𝑣𝑖 ⩽ 𝑚 − 1 −
⌊
𝑚
𝑟

⌋
for all 𝑖 , Proposition 4.2 implies that 𝑣𝑖 < 𝑤 for any𝑤 ∈ Γ+ (𝑃𝑖 ).

Therefore
𝜄{𝑖 } (𝑤) ⩽̸ 𝑣

for any𝑤 ∈ Γ+ (𝑃𝑖 ).
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Now, consider 𝑤 ∈ Γ+
(
𝑃𝑖 𝑗 | 𝑗 ∈ 𝐼 ⊂ {1, . . . , 𝑙1 − 1}

)
. If 𝑤𝑖 > 𝑚 −

⌊
𝑚
𝑟

⌋
for some

𝑖 , then 𝑤 ⩽̸ 𝑣 . Otherwise, assume 𝑤 = (𝑘, . . . , 𝑘) for some 1 ⩽ 𝑘 ⩽ 𝑚 − 1 −
⌊
𝑚
𝑟

⌋
.

Proposition 4.2 shows that #𝐼 = 𝑙𝑘 , and the number of entries of 𝑣 greater than or equal
to 𝑘 is:

𝑚−1−⌊𝑚
𝑟 ⌋∑︁

𝑖=𝑘

𝑠𝑖 = 𝑙𝑘 − 1.

Thus, for any 𝐼 of cardinality 𝑙𝑘 , we have 𝜄𝐼 (𝑤) ⩽̸ 𝑣 . Consequently, 𝑤 ⩽̸ 𝑣 for all
𝑤 ∈ Γ(supp(𝐴)), which confirms that 𝐴 is non-special.

Next, let 𝛾 =𝑚 − 1 −
⌊
𝑚
𝑟

⌋
, and consider 𝐵, an effective non-special divisor of degree

𝑔, supported on supp((𝑥)). Suppose there exists 𝑃 such that 𝑣𝑃 (𝐵) ⩾ 𝛾 + 1. In this case,
𝜄 (𝛾 + 1) ⩽ 𝐵, which contradicts the non-special nature of 𝐵.

We express 𝐵 as

𝐵 =

𝛾∑︁
𝑗=1

𝑗𝐷 𝑗 ,

where each 𝐷 𝑗 is either zero or the sum of distinct rational places of degree 1, and the
supports satisfy

supp(𝐷 𝑗 ) ∩ supp(𝐷ℎ) = ∅, for 𝑗 ≠ ℎ.

Note that this decomposition ensures that each 𝐷 𝑗 is disjointly supported, maintaining
the structure required for 𝐵, thus

# supp(𝐵) ⩽ 𝑙1 − 1 < 𝑟 = # supp((𝑥)0).

For 𝐷𝛾 we have
deg(𝐷𝛾 ) ⩽ 𝑙𝛾 − 1 = 𝑠𝛾 .

Similarly, for 1 ⩽ ℎ ⩽ 𝛾 , it holds that

𝛾∑︁
𝑗=ℎ

deg(𝐷 𝑗 ) ⩽ deg(𝐷ℎ) +
𝛾∑︁

𝑗=ℎ+1
deg(𝐷 ′

𝑗 ) ⩽ 𝑙ℎ − 1.

Now, define 𝐷 ′
ℎ
⩾ 𝐷ℎ such that

supp(𝐷ℎ) ⊆ supp((𝑥)0) \ supp ©«𝐵 +
𝛾∑︁

𝑗=ℎ+1
𝐷 ′

𝑗

ª®¬
and ensure that

𝛾∑︁
𝑗=ℎ

𝐷 ′
ℎ
=

𝛾∑︁
𝑗=ℎ

# supp(𝐷 ′
𝑗 ) = 𝑙ℎ − 1.

From this construction, it follows that

deg(𝐷 ′
ℎ
) = 𝑠ℎ .
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Consequently, we have

𝑔 = deg(𝐵) ⩽
𝛾∑︁
𝑗=1

𝑗 · deg(𝐷 ′
𝑗 ) =

𝛾∑︁
𝑗=1

𝑗𝑠 𝑗 = 𝑔.

This equality implies that 𝐷 ′
ℎ
= 𝐷ℎ for all 1 ⩽ ℎ ⩽ 𝛾 , confirming that 𝐵 has the desired

structure.
Finally, in the case where 𝑟 < 𝑚, Lemma 4.3 states that 𝑠 𝑗 = 1 if 𝑗 =

⌊
𝑘𝑚
𝑟

⌋
, and 𝑠 𝑗 = 0

otherwise. Hence, 𝐷 𝑗 = 𝑃𝑘 or 0. □

Corollary 4.5. On the norm-trace curve given by 𝑦𝑞
𝑟−1 +𝑦𝑞𝑟−2 + · · · +𝑦 = 𝑥

𝑞𝑟 −1
𝑞−1 over F𝑞𝑟 ,

any effective non-special divisor of degree 𝑔 supported by points 𝑃0𝑏 is of the form

𝐴 =

𝑞𝑟 −1
𝑞−1 −2∑︁
𝑖=1,𝑞∤𝑖

𝑖𝑃0𝑏𝑖 .

Proof. Let 𝑢 =
𝑞𝑟 −1
𝑞−1 . Suppose that⌊

(𝑟 − 1)𝑢
𝑞𝑟−1

⌋
= 𝑢 − 2.

Our goal is to show that
⌊
𝑗𝑚

𝑟

⌋
cannot be divisible by 𝑞. To justify this, observe that

𝑢 − 2 − #
{
𝑖 ∈ {1, . . . , 𝑢 − 2} : 𝑞 | 𝑖

}
= 𝑢 − 2 − 𝑢 − 1

𝑞
+ 1 =

𝑢 − 1
𝑞

(𝑞 − 1) = 𝑞𝑟−1 − 1.

This equality follows from the fact that 𝑢 =
𝑞𝑟 −1
𝑞−1 is a multiple of 𝑞. The term #{𝑖 : 𝑞 |

𝑖} = 𝑢−1
𝑞

counts the multiples of 𝑞 in {1, . . . , 𝑢 − 2}. Subtracting this count from 𝑢 − 2
and adding 1 adjusts the range correctly, leaving 𝑢−1

𝑞
(𝑞− 1), which simplifies to 𝑞𝑟−1 − 1.

Consequently, the divisor 𝐴 is given by

𝐴 =

𝑞𝑟−1−1∑︁
𝑗=1

⌊
𝑗𝑢

𝑞𝑟−1

⌋
𝑃 𝑗 .

This expression ensures that 𝐴 is non-special and has degree 𝑔. Furthermore, by Theo-
rem 4.4, any other divisor with these characteristics must take this specific form.

Next, we show that
⌊

𝑗𝑢

𝑞𝑟−1

⌋
is not divisible by 𝑞 for any 1 ⩽ 𝑗 ⩽ 𝑞𝑟−1 − 1. Suppose,

for contradiction, that ⌊
𝑗𝑢

𝑞𝑟−1

⌋
= 𝑞𝑘,

for some 1 ⩽ 𝑘 ⩽ 𝑢−1
𝑞

− 1. Then, the equality

𝑗𝑢 = 𝑞𝑟𝑘 + 𝑧 = 𝑢 (𝑞 − 1)𝑘 + 𝑘 + 𝑧
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implies that 𝑢 | (𝑘 + 𝑧). However, note that

𝑘 + 𝑧 <
𝑢 − 2
𝑞

+ 𝑞𝑟−1 =
𝑢𝑞 − 1
𝑞

< 𝑢.

Since𝑘+𝑧 is strictly less than𝑢, it cannot be a multiple of𝑢, contradicting the assumption
that 𝑢 | (𝑘 + 𝑧).

Therefore, no such 𝑘 can exist, and we conclude that
⌊

𝑗𝑢

𝑞𝑟−1

⌋
is not divisible by 𝑞 for

any 𝑗 . This completes the proof. □

The following corollary provides the explicit form of the desired divisors in the case
of the second example of function fields discussed in this subsection.

Corollary 4.6. On the Hermitian curve𝑦𝑞+𝑦−𝑥𝑞+1 = 0 over F𝑞2 , any effective non-special
divisor of degree 𝑔 with support contained in {𝑃0𝑏𝑖 : 1 ⩽ 𝑖 ⩽ 𝑞} is of the form

𝐴 =

𝑞−1∑︁
𝑖=1

𝑖𝑃0𝑏𝑖 .

We now construct non-special divisors of degree 𝑔−1 by building on the non-special
divisors of degree 𝑔 established earlier. Using Lemma 2.3 and Theorem 4.4, we have the
following explicit construction.

Theorem 4.7. Let F/F𝑞 (𝑦) by the Kummer extension defined by

𝑥𝑚 =

𝑟∏
𝑖=1

(𝑦 − 𝛼𝑖 )

where 𝛼𝑖 ∈ F𝑞 and (𝑟,𝑚) = 1. Then

𝐴 =

𝑚−1−⌊𝑚
𝑟 ⌋∑︁

𝑗=1
𝑗

𝑠 𝑗∑︁
𝑖=1

𝑃0𝑏 𝑗𝑖
− 𝑃 .

is a non-special divisor of degree 𝑔 − 1 for all 𝑃 ∈ {𝑃𝑎𝑏 : 𝑎 ≠ 0 or 𝑏 ≠ 𝑏 𝑗𝑖 } ∪ {𝑃∞}. In
particular there exist non-special divisors of degree 𝑔 − 1 supported on supp ((𝑥)0) ∪ {𝑃𝑎𝑏}
for any 𝑎 ≠ 0.

Proof. Note that 𝐴 + 𝑃𝑎𝑏 is non-special of degree 𝑔 by Theorem 4.4 and, by Lemma 2.3,
we have 𝐴 is non-special too. Given

# supp(𝐴) = 𝑟 −
⌊ 𝑟
𝑚

⌋
− 1 ⩽ 𝑟 − 1,

we can take 𝑃 ∈ supp(𝑥) \ supp(𝐴) = ∅. □

To conclude this section, [6, Lemma 4.1] explicitly describes the form of the non-
special divisors of degree 𝑔 and 𝑔 − 1 for the case of a curve F/F𝑞2 defined by

𝑦𝑞+1 = 𝑥2 + 𝑥 . (16)
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Lemma 4.8. Let 𝑞 be odd, and let F/F𝑞2 be the function field defined by (16). Let 𝑃 ∈{
𝑃𝑎𝑏 ∈ P(F/F𝑞2 ) | 2𝑎 + 1 ≠ 0

}
be a rational place of F. Then, 𝑔𝑃 is a non-special divisor

of degree 𝑔. In particular, 𝑔𝑃 − 𝑃 ′ is a non-special divisor of degree 𝑔 − 1 for all rational
places 𝑃 ′ ∈ P(F/F𝑞2 ) distinct from 𝑃 .

Proof. The hyperelliptic involution of the curve defined by 𝑦𝑞+1 = 𝑥2 + 𝑥 is given by
𝜑 (𝑥,𝑦) = (−𝑥 − 1, 𝑦). Consequently, the fixed points of 𝜑 are the pairs (𝑎, 𝑏) ∈ F𝑞2 × F𝑞2

such that 2𝑎 + 1 = 0. Consider a rational place 𝑃 ∈
{
𝑃𝑎𝑏 ∈ P(F/F𝑞2 ) | 2𝑎 + 1 ≠ 0

}
.

It is known that if 𝑃 is a rational place of a hyperelliptic function field not fixed
by the hyperelliptic involution, then the Weierstrass semigroup at 𝑃 satisfies 𝐻 (𝑃) =
{0, 𝑔 + 1, 𝑔 + 2, . . .}, see [21, Satz 8]. As a result, we have L(𝑔𝑃) = {0}, which implies
that 𝑔𝑃 is a non-special divisor of degree 𝑔.

Moreover, for any rational place 𝑃 ′ ∈ P(F/F𝑞2 ) \ {𝑃}, the divisor 𝑔𝑃 − 𝑃 ′ is also
non-special, as established in [1, Lemma 3]. □

4.2 Example on an asymptotically good tower
A tower 𝐹1 ⊆ 𝐹2 ⊆ 𝐹3 ⊆ · · · of algebraic function fields over a finite field F𝑞 is said

to be asymptotically good if

lim
𝑚→∞

𝐵1 (𝐹𝑚/F𝑞)
𝑔(𝐹𝑚/F𝑞)

> 0.

In this subsection, we focus on constructing non-special divisors of degree 𝑔(𝐹𝑚)
using an example of an asymptotically good tower studied in [9] by A. Garcia and H.
Stichtenoth. Since this setting is more complex, we introduce several definitions to
explain the structures and properties clearly. Even though there are many definitions,
they are important to understand the key aspects of function field towers and to prepare
for the results that follow.

We will consider the tower F = (𝐹𝑚)𝑚⩾1 of function fields F𝑚/𝐾 where 𝐾 = F𝑞2

given by

𝐹𝑚 = 𝐾 (𝑥1, . . . , 𝑥𝑚) with 𝑥
𝑞

𝑖+1 + 𝑥𝑖+1 =
𝑥
𝑞

𝑖

𝑥
𝑞−1
𝑖

+ 1
for 𝑖 = 1, . . . ,𝑚 − 1.

The following proposition outlines key properties of the tower, such as its genus
and ramification structure.

Proposition 4.9. (i) For all𝑚 ⩾ 2, the extension 𝐹𝑚/𝐹𝑚−1 is Galois of degree 𝑞.

(ii) The pole of 𝑥1 in 𝐹1 is totally ramified in 𝐹𝑚/𝑇1, i.e.,

(𝑥1)𝐹𝑚∞ = 𝑞𝑚−1𝑃 (𝑚)
∞

with a place 𝑃 (𝑚)
∞ ∈ P1 (𝐹𝑚) of degree one.
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(iii) The genus is

𝑔(𝐹𝑚) =
{
(𝑞𝑚/2 − 1)2 if𝑚 ≡ 0 mod 2,
(𝑞 (𝑚+1)/2 − 1) (𝑞 (𝑚−1)/2 − 1) if𝑚 ≡ 1 mod 2.

Proof. For (i) and (ii), see [9, Lemma 3.3]. For (iii), see [9, Remark 3.8]. □

We now define (𝑐𝑚)𝑚⩾1, a key sequence that connects the degree of divisors with
the structure of the function fields in the tower. It will play an important role in the
final construction.

Definition 4.10. For𝑚 ⩾ 1, let

𝑐𝑚 =

{
𝑞𝑚 − 𝑞𝑚/2 if𝑚 ≡ 0 mod 2,
𝑞𝑚 − 𝑞 (𝑚+1)/2 if𝑚 ≡ 1 mod 2.

Definition 4.11. For 1 ⩽ 𝑗 ⩽ 𝑚, define

𝜋 𝑗 =

𝑗∏
𝑖=1

(
𝑥
𝑞−1
𝑖

+ 1
)
, and

L(𝑚)
𝑗

=

{
𝑃 ∈ P(𝐹𝑚) : 𝑃 is a zero of 𝑥𝑞−1

𝑖
+ 1 for some 𝑖 ∈ {1, . . . , 𝑗}

}
.

This lemma describes the principal divisors of (𝜋 𝑗 )1⩽ 𝑗⩽𝑚 , which are fundamental to
understanding the supports and degrees of the divisors we construct.

Lemma 4.12. (i) Let 1 ⩽ 𝑗 ⩽ 𝑚. Then the principal divisor of 𝜋 𝑗 is given by

(𝜋 𝑗 )𝐹𝑚 =𝐶
(𝑚)
𝑗

−
(
𝑞𝑚 − 𝑞𝑚− 𝑗

)
𝑃
(𝑚)
∞ ,

where 𝐶 (𝑚)
𝑗

⩾ 0 is a divisor of 𝐹𝑚 with

supp
(
𝐶

(𝑚)
𝑗

)
= L(𝑚)

𝑗
.

(ii) Let 1 ⩽ 𝑗 ⩽ 𝑚 − 1 and 0 ⩽ 𝑒 ⩽ 𝑞 − 1. Then the principal divisor of 𝜋 𝑗𝑥𝑒𝑗+1 in 𝐹𝑚 is
given by (

𝜋 𝑗𝑥
𝑒
𝑗+1

)𝐹𝑚
= 𝐷

(𝑚)
𝑗,𝑒

−
(
𝑞𝑚 − 𝑞𝑚− 𝑗 + 𝑒𝑞𝑚− 𝑗−1) 𝑃 (𝑚)

∞ ,

where 𝐷 (𝑚)
𝑗,𝑒

⩾ 0 is a divisor of 𝐹𝑚 with

L(𝑚)
𝑗

⊆ supp
(
𝐷

(𝑚)
𝑗,𝑒

)
.

Proof. See [19, Lemma 3.4]. □
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The following definition introduces
(
𝐴

(𝑚)
𝑗

)
𝑚⩾1

, a divisor structured using the set

L(𝑚)
𝑗

introduced in Definition 4.11. These divisors play a direct role in the construction
of non-special divisors in the tower.

Definition 4.13. For 1 ⩽ 𝑗 ⩽ 𝑚, let

𝐴
(𝑚)
𝑗

=
∑︁

𝑃 ∈L(𝑚)
𝑗

𝑃 .

Remark 4.14. From Lemma 4.12 we have: 𝜋 𝑗 ∈ L
( (
𝑞𝑚 − 𝑞𝑚− 𝑗

)
𝑃
(𝑚)
∞ −𝐴 (𝑚)

𝑗

)
.

The following results, Proposition 4.15 and Lemma 4.16, provide the necessary
properties for the construction. These results establish both the required dimension and
degree.

Proposition 4.15. For 1 ⩽ 𝑗 ⩽ 𝑚, one has

L
( (
𝑞𝑚 − 𝑞𝑚− 𝑗

)
𝑃
(𝑚)
∞ −𝐴 (𝑚)

𝑗

)
= ⟨𝜋 𝑗 ⟩;

i.e., the space L((𝑞𝑚 − 𝑞𝑚− 𝑗 )𝑃 (𝑚)
∞ −𝐴 (𝑚)

𝑗
) is one-dimensional.

Proof. See [19, Proposition 3.6]. □

Lemma 4.16 ([19, Lemma 3.7]). Let 1 ⩽ 𝑗 ⩽ 𝑚/2. Then

deg(𝐴 (𝑚)
𝑗

) = 𝑞 𝑗 − 1.

Proof. Let A (𝑚)
𝑖

=

{
𝑃 ∈ P(𝐹𝑚) : 𝑃 is a zero of 𝑥𝑞−1

𝑖
+ 1

}
. It follows from [9, Lemma 3.6]

that, for 1 ⩽ 𝑖 ⩽ 𝑚/2,

deg
©«

∑︁
𝑃 ∈A (𝑚)

𝑖

𝑃
ª®®¬ = (𝑞 − 1)𝑞𝑖−1.

Since

𝐴
(𝑚)
𝑗

=

𝑗∑︁
𝑖=1

∑︁
𝑃∈A (𝑚)

𝑖

𝑃,

we obtain

deg
(
𝐴

(𝑚)
𝑗

)
=

𝑗∑︁
𝑖=1

(𝑞 − 1)𝑞𝑖−1 = 𝑞 𝑗 − 1.

□

Definition 4.17. We define a divisor 𝐴 (𝑚) of 𝐹𝑚 as follows. Let 𝐴 (1) = 0 and, for𝑚 ⩾ 2,

𝐴 (𝑚) = 𝐴 (𝑚)
𝑗

with 𝑗 =

{
𝑚
2 if𝑚 ≡ 0 mod 2,
𝑚−1

2 if𝑚 ≡ 1 mod 2.
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The following lemma combines all earlier results to establish the main properties.

Lemma 4.18 ([19, Lemma 3.9]). We have:

1. deg(𝐴 (𝑚) ) = 𝑐𝑚 − 𝑔(𝐹𝑚);

2. dim(𝑐𝑚𝑃 (𝑚)
∞ −𝐴 (𝑚) ) = 1;

i.e., 𝑐𝑚𝑃
(𝑚)
∞ −𝐴 (𝑚) is non-special of degree 𝑔(𝐹𝑚).

Proof. For𝑚 = 1, all assertions are immediate since 𝑐1 = 𝑔(𝐹1) = 0 and 𝐴 (1) = 0. Now,
let𝑚 ⩾ 2.

• If𝑚 ≡ 0 mod 2, we have

𝑐𝑚 = 𝑞𝑚 − 𝑞𝑚/2 and 𝑔𝑚 = (𝑞𝑚/2 − 1)2 .

Hence
𝑐𝑚 − 𝑔𝑚 = 𝑞𝑚/2 − 1 = (𝐴 (𝑚) )

by Lemma 4.16. On the other hand, using Proposition 4.15, we obtain

L(𝑐𝑚𝑃 (𝑚)
∞ −𝐴 (𝑚) ) = L((𝑞𝑚 − 𝑞𝑚/2)𝑃 (𝑚)

∞ −𝐴 (𝑚)
𝑚/2) = ⟨𝜋𝑚/2⟩.

• If𝑚 ≡ 1 mod 2, the proof follows from a similar argument.

□

4.3 Example of construction with a sufficiently large number of
points

The results presented in this subsection (by H. Randriam in [20]), while seemingly
technical and detailed, serve as essential tools for our main objective: the construction of
non-special divisors of degree 𝑔 − 1. The lemmas and definitions presented below create
a step-by-step framework leading to the final construction. Each result is carefully built
upon the previous one, establishing bounds and properties for divisors under various
conditions.

The next lemma provides initial constraints on the size of a set S, given certain
conditions on divisors 𝐴 and 𝐵. These bounds are fundamental for analyzing ordinarity
and exceptionality in later results.

Lemma 4.19. Let C be a curve of genus 𝑔 defined over F𝑞 , and S ⊂ C(F𝑞).

1. Let 𝐴 be an F𝑞-rational divisor on C such that

𝑖 (𝐴) = dim(𝐴) − (deg(𝐴) + 1 − 𝑔) ⩾ 1.

Suppose that for all 𝑃 ∈ S we have dim(𝐴 + 𝑃) > dim(𝐴). Then

#S ⩽ 𝑔 − dim(𝐴). (17)

(If deg(𝐴) = −1, then, we also have #S ⩽ 1.)
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2. Let 𝐵 a F𝑞-rational divisor on C such that dim(𝐵) ⩾ 1. Suppose that for all 𝑃 ∈ S
we have dim(𝐵 − 𝑃) > dim(𝐵) − 1. Then

#S ⩽ deg(𝐵) + 1 − dim(𝐵). (18)

(If deg(𝐵) = 2𝑔 − 1, we also have #S ⩽ 1.)

Proof. See [20, Lemma 1]. □

The main result of this section is based on the following Lemma which extends the
results of Lemma 4.19 to more complex cases, such as when multiple points are added
or removed from a divisor.

For all 𝑞 > 1 and all integer 𝑛 ⩾ 2, define

𝐺𝑞 (𝑛) =
𝑛−2∑︁
𝑘=1

(𝑞𝑛−𝑘 − 1) (𝑞𝑛−𝑘−1 − 1)
(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)

=
1

𝑞2 − 1 −
1 − (𝑞−1)𝑛

𝑞𝑛
− 1

(𝑞 − 1) (𝑞𝑛−1 − 1) .

Lemma 4.20. Let C be a curve of genus 𝑔 defined over F𝑞 and S ⊂ C(F𝑞).

1. Let 𝐴 be an F𝑞-rational divisor on C such that deg(𝐴) ⩾ −2 and

𝑖 (𝐴) = dim(𝐴) − (deg(𝐴) + 1 − 𝑔) ⩾ 2.

Suppose that for all 𝑃 ∈ S we have dim(𝐴 + 2𝑃) > dim(𝐴). Then

#S ⩽ 3𝑔 + 3 + deg(𝐴) − 3 dim(𝐴) (19)

and

#S ⩽
(
1 + 𝑞𝑖 (𝐴)−2 − 1

𝑞𝑖 (𝐴) − 1

)−1 (
6𝑔 − 6 − 2 deg(𝐴) − 2𝐺𝑞 (𝑖 (𝐴)) · #C(F𝑞)

)
. (20)

More generally, for all integers𝑤 such that 2 ⩽ 𝑤 ⩽ 𝑖 (𝐴),

#S ⩽ (𝑖 (𝐴) −𝑤) +
(
1 + 𝑞𝑤−2 − 1

𝑞𝑤 − 1

)−1

(
6𝑔 − 6 − 2 deg(𝐴) − 4(𝑖 (𝐴) −𝑤) − 2𝐺𝑞 (𝑤) · #C(F𝑞)

)
. (21)

2. Let 𝐵 an F𝑞-rational divisor on C such as deg(𝐵) ⩽ 2𝑔 and dim(𝐵) ⩾ 2. Suppose
that for all 𝑃 ∈ S we have dim(𝐵 − 2𝑃) > dim(𝐵) − 2. Then

#S ⩽ 2 deg(𝐵) + 2𝑔 + 4 − 3 dim(𝐵) (22)

and

#S ⩽
(
1 + 𝑞dim(𝐵)−2 − 1

𝑞dim(𝐵) − 1

)−1 (
2 deg(𝐵) + 2𝑔 − 2 − 2𝐺𝑞 (dim(𝐵)) · #C(F𝑞)

)
. (23)
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More generally, for all integers𝑤 such that 2 ⩽ 𝑤 ⩽ dim(𝐵),

#S ⩽ (𝑙 (𝐵) −𝑤) +
(
1 + 𝑞𝑤−2 − 1

𝑞𝑤 − 1

)−1

(
2 deg(𝐵) + 2𝑔 − 2 − 4(dim(𝐵) −𝑤) − 2𝐺𝑞 (𝑤) · #C(F𝑞)

)
. (24)

Proof. See [20, Lemma 2]. □

To simplify the application of these results, we define, over Z, the functions 𝑓1,C and
𝑓2,C, which summarize the bounds established in Lemmas 4.19 and 4.20:

𝑓1,C(𝑎) =


1 if 𝑎 = −1,
𝑔 if 0 ⩽ 𝑎 ⩽ 𝑔 − 2,
0 otherwise.

, and

𝑓2,C(𝑎) =



𝑔 if 𝑎 = 𝑔 − 2,

min
2⩽𝑤⩽𝑔−1−𝑎

⌊
(𝑔 − 1 − 𝑎 −𝑤) +

(
1 + 𝑞𝑤−2−1

𝑞𝑤−1

)−1

(2𝑔 − 2 + 2𝑎 + 4𝑤 − 2𝐺𝑞 (𝑤)#C(F𝑞))
⌋

if − 2 ⩽ 𝑎 ⩽ 𝑔 − 3,

0 otherwise.

Definition 4.21. Let C be a curve of genus 𝑔 ⩾ 1 defined over F𝑞 . A divisor 𝐷 on C is
called ordinary if

dim(𝐷) =𝑚𝑎𝑥 (0, deg(𝐷) + 1 − 𝑔).

Otherwise, 𝐷 is called exceptional.

Lemma 4.22 provides an upper bound on the size of S, ensuring that this set is
sufficiently small to satisfy the conditions required in Proposition 4.23. This connection
is crucial for constructing divisors incrementally while maintaining their ordinarity.

Lemma 4.22. Let 𝐴 be a divisor on C, S ⊂ C(F𝑞) a set of rational points and 𝑠 ∈ {1, 2}.
Assume that 𝐴 is ordinary, and 𝐴 + 𝑠𝑃 is exceptional for all 𝑃 ∈ S. Then

#𝑆 ⩽ 𝑓𝑠,C (deg(𝐴)). (25)

Proof. Let 𝑎 = deg(𝐴). We analyze the cases based on the value of 𝑠 .

(i) Case 𝑠 = 1:

(a) If 𝑎 ⩽ −2 or 𝑎 ⩾ 2𝑔 − 2, then 𝐴 + 𝑃 is ordinary. This implies that S is empty,
and we have 𝑓1,C(𝑎) = 0.

(b) If 𝑔 − 1 ⩽ 𝑎 ⩽ 2𝑔 − 3, the ordinarity of 𝐴 means dim(𝐴) = 𝑎 + 1 − 𝑔. By
Riemann–Roch, 𝐴 + 𝑃 remains ordinary, leading to the same conclusion as
the previous case.
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(c) If −1 ⩽ 𝑎 ⩽ 𝑔 − 2, the ordinarity of 𝐴 implies dim(𝐴) = 0. For 𝐴 + 𝑃 to be
exceptional, dim(𝐴+ 𝑃) ⩾ 1 must hold. This is addressed using Lemma 4.19-
1.

(ii) Case 𝑠 = 2:

(a) If 𝑎 ⩽ −3 or 𝑎 ⩾ 2𝑔 − 1, then 𝐴 + 2𝑃 is ordinary, implying that S is empty.
(b) If 𝑔 − 1 ⩽ 𝑎 ⩽ 2𝑔 − 2, the ordinarity of 𝐴 ensures dim(𝐴) = 𝑎 + 1 − 𝑔. Using

Riemann–Roch, 𝐴 + 2𝑃 is also ordinary, leading to the same conclusion as
above.

(c) If 𝑎 = 𝑔 − 2, the ordinarity of 𝐴 implies dim(𝐴) = 0. For 𝐴 + 2𝑃 to be
exceptional, dim(𝐴 + 2𝑃) ⩾ 1 must hold. By Lemma 4.19-1, we conclude
that #𝑆 ⩽ 𝑔 = 𝑓2,C (𝑎).

(d) If −2 ⩽ 𝑎 ⩽ 𝑔 − 3, the ordinarity of 𝐴 gives dim(𝐴) = 0, while the ex-
ceptionality of 𝐴 + 2𝑃 requires dim(𝐴 + 2𝑃) ⩾ 1. This is addressed using
Lemma 4.20-1.

□

Proposition 4.23. LetC be a curve of genus𝑔 defined over F𝑞 , 𝑟 ⩾ 1 an integer, 𝑠1, . . . , 𝑠𝑟 ∈
{1, 2}, F𝑞-rational divisors𝑇1, . . . ,𝑇𝑟 on C, and 𝑑 ∈ Z an integer. The degree of𝑇𝑖 is denoted
𝑡𝑖 = deg(𝑇𝑖 ). Let 𝐷0 be an F𝑞-rational divisor on C of degree deg(𝐷0) = 𝑑0 ⩽ 𝑑 , such that
𝑠𝑖𝐷0 −𝑇𝑖 is ordinary. Finally, let S ⊂ C(F𝑞) be a set of points satisfying

#S > max
𝑑0⩽𝑑 ′<𝑑

𝑟∑︁
𝑖=1

𝑓𝑠𝑖 ,C (𝑠𝑖𝑑 ′ − 𝑡𝑖 ) . (26)

Then, there exists an F𝑞-rational divisor 𝐷 on C of degree deg(𝐷) = 𝑑 , such that 𝑠𝑖𝐷 −𝑇𝑖
is ordinary. Furthermore, 𝐷 can be chosen such that 𝐷 − 𝐷0 is effective and supported by
points in S. .

Proof. We construct 𝐷 incrementally. Let 𝑑 ′ satisfy 𝑑0 ⩽ 𝑑 ′ < 𝑑 . Suppose a divisor 𝐷 ′

of degree 𝑑 ′ has already been constructed such that 𝑠𝑖𝐷 ′ −𝑇𝑖 is ordinary and 𝐷 ′ − 𝐷0 is
effective and supported in S.

By applying Lemma 4.22 with 𝑠 = 𝑠𝑖 and 𝐴 = 𝑠𝑖𝐷
′ −𝑇𝑖 , we know that there are at

most 𝑓𝑠𝑖 ,C(𝑠𝑖𝑑 ′ − 𝑡𝑖 ) points 𝑃 ∈ S such that 𝑠𝑖 (𝐷 ′ + 𝑃) −𝑇𝑖 becomes exceptional.
Using inequality (26), which ensures that #S is sufficiently large, we can always

find a point 𝑃 ∈ S where 𝑠𝑖 (𝐷 ′ + 𝑃) −𝑇𝑖 remains ordinary. This guarantees that adding
𝑃 to 𝐷 ′ preserves the ordinarity condition for 𝑠𝑖𝐷 ′ −𝑇𝑖 . Furthermore, by construction,
(𝐷 ′ + 𝑃) − 𝐷0 remains effective and supported entirely within S.

Finally, by repeating this process for each 𝑑 ′ < 𝑑 , we can incrementally construct 𝐷
of degree 𝑑 with the desired properties. The result follows by induction on 𝑑 ′. □

Lemma 4.24. With the previous notations, 𝑓𝑠,C (𝑎) is an increasing function when 𝑎 ⩽
𝑔 − 1 − 𝑠 , their maximum value on Z is 𝑓𝑠,C (𝑔 − 1 − 𝑠) = 𝑠2𝑔.
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Proof. See [20, Lemma 8]. □

Using the refined bounds from Lemma 4.24, Proposition 4.25 establishes the existence
of divisors of any degree 𝑑 with specific ordinarity properties, assuming the curve has a
sufficiently large number of points.

Proposition 4.25. LetC be a curve of genus𝑔 defined over F𝑞 , 𝑟 ⩾ 1 an integer, 𝑠1, . . . , 𝑠𝑟 ∈
{1, 2}, F𝑞-rational divisors 𝑇1, . . . ,𝑇𝑟 on C. Assume that

#C(F𝑞) >
𝑟∑︁
𝑖=1

(𝑠𝑖 )2𝑔.

Then, for all integer 𝑑 , there exists an F𝑞-rational divisor 𝐷 on C of degree deg(𝐷) = 𝑑 and
supported in C(F𝑞), such that 𝑠𝑖𝐷 −𝑇𝑖 is ordinary.

Proof. We apply Proposition 4.23 with S = C(F𝑞), and Lemma 4.24. □

Corollary 4.26 represents the main result of this subsection.

Corollary 4.26. Let C be a curve of genus 𝑔 defined over F𝑞 , 𝑄 and 𝐺 two F𝑞-rational
divisors. We denote by 𝑘 = deg(𝑄) and 𝑛 = deg(𝐺) their degrees. Assume that

#C(F𝑞) > 5𝑔 and 𝑛 ⩾ 2𝑘 + 𝑔 − 1.

Then, there exists an F𝑞-rational divisor 𝐷 on C supported in C(F𝑞), such that 𝐷 −𝑄 is
non-special of degree 𝑔 − 1 and dim(2𝐷 −𝐺) = 0.

In particular, if 𝑛 = 2𝑘 +𝑔 − 1, then 𝐷 −𝑄 and 2𝐷 −𝐺 are non-special of degree 𝑔 − 1.

Proof. We apply Proposition 4.25 with 𝑟 = 2, 𝑠1 = 1, 𝑇1 = 𝑄 , 𝑠2 = 2, 𝑇2 = 𝐺 and
𝑑 = 𝑘 + 𝑔 − 1. □

Remark 4.27. Notice that the divisor 𝐷 in the previous corollary can be built as seen in
the proof of Proposition 4.23. Below is the summary of the steps with the conditions of
Corollary 4.26:

1. Let𝑄 and𝐺 be two F𝑞-rational divisors with deg(𝑄) = 𝑘 and deg(𝐺) = 2𝑘 +𝑔− 1.

2. Let 𝐷0 be a divisor such that deg(𝐷0) = 𝑑0 ⩽ 𝑘 + 𝑔 − 1 and 𝐷0 −𝑄 , 2𝐷0 −𝐺 are
ordinary.

3. Build a divisor 𝐷 ′ of degree 𝑑 ′, 𝑑0 ⩽ 𝑑 ′ < 𝑘 + 𝑔 − 1 such that 𝐷 ′ −𝑄 , 2𝐷 ′ −𝐺 are
ordinary and 𝐷 ′ − 𝐷0 effective.

4. We can find 𝑃 ∈ C(F𝑞) such that 𝐷 ′ + 𝑃 −𝑄 , 2(𝐷 ′ + 𝑃) −𝐺 are ordinary.

5. We reapply step 4 until we obtain the desired divisor 𝐷 with the desired degree
𝑘 + 𝑔 − 1.
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