
Polynesian Journal of Mathematics

Volume 1, Issue 6

Kyber terminates

Manuel Barbosa Peter Schwabe

Received 16 Oct 2024

Published 30 Dec 2024

Communicated by Nicolas Thériault doi: 10.69763/polyjmath.1.6

https://doi.org/10.69763/polyjmath.1.6

Polynesian Journal of Mathematics
Volume 1, Issue 6 (Dec. 2024)

Kyber terminates

Manuel Barbosa
1

Peter Schwabe
2

1
University of Porto & INESC TEC & MPI-SP

2
MPI-SP & Radboud University

Abstract

The key-generation function of the lattice-based key-encapsulation mechanism

CRYSTALS-Kyber (or short, just Kyber) involves a rejection-sampling routine to

produce coefficients modulo 𝑞 = 3329 that look uniformly random. The input to this

rejection sampling is output of the SHAKE-128 extendable output function (XOF). If

this XOF is modeled as a random oracle with infinite output length, it is easy to see

that Kyber terminates with probability 1; also, in this model, for any upper bound

on the running time, the probability of termination is strictly smaller than 1.

In this short note we show that an (unconditional) upper bound for the running

time of Kyber exists. Computing a tight upper bound, however, is (likely to be)

infeasible. The highly non-tight bound we prove in this paper does not have any

implications for the use of Kyber in practice, but it may be useful for computer-

assisted reasoning about Kyber using tools that require a simple proof of termination.

1 Introduction
The lattice-based key-encapsulation mechanism Kyber [6, 2], which has recently

been standardized by NIST as FIPS 203 (ML-KEM) [9], works over the ring R𝑞 =

Z𝑞 [𝑋]/(𝑋𝑛 + 1), where 𝑞 = 3329 and 𝑛 = 256. Kyber’s public keys are of the form

As + e, where A ∈ R𝑘×𝑘𝑞 “looks uniform”, and s, e ∈ R𝑘𝑞 are sampled from a noise

distribution. The value 𝑘 ∈ {2, 3, 4} depends on the parameter set of Kyber. More

concretely, the entry at position (𝑖, 𝑗) of the matrix A is sampled from a 32-byte public

random seed 𝜌 = (𝜌0, . . . , 𝜌31) as Parse(XOF(𝜌, 𝑖, 𝑗)), where XOF is instantiated with

SHAKE-128 [5, 8].

Intuitively, the Parse routine interprets the output of XOF as a (possibly infinitely

long) sequence of 12-bit unsigned integers. The first 256 integers in that sequence that

are smaller than 𝑞 are taken as the coefficients of the output polynomial in R𝑞 ; integers

larger or equal than 𝑞 are discarded. A high-level pseudocode description of Parse is

given in Algorithm 1; for a more implementation-oriented specification that takes a

byte sequence as input, see [2, Alg. 1].

Note that in Kyber, the output of Parse is assumed to be in NTT domain, but this

detail does not matter for the discussion here, so we ignore it in Algorithm 1 for better

Poly. J. Math. 1 (6) 2

readability. Also note that the approach of generating A by rejection-sampling the

output of SHAKE-128 is not unique to Kyber. It was introduced in NewHope [1, Sec. 3]

and is used, for example, also in Dilithium [7, 3]. The reasoning in this short note can be

adapted straightforwardly to those schemes and possibly other lattice-based primitives

that use the same approach to generate a matrix A.

Algorithm 1 Parse : {0, . . . , 4095}∗ → R𝑞
Require: Sequence of 12-bit unsigned integers 𝑑0, 𝑑1, 𝑑2 . . . ∈ {0, . . . , 4095}∗
Ensure: Polynomial a ∈ R𝑞

1: 𝑖 ← 0

2: 𝑗 ← 0

3: while 𝑗 < 𝑛 do
4: if 𝑑𝑖 < 𝑞 then
5: 𝑎 𝑗 ← 𝑑𝑖
6: 𝑗 ← 𝑗 + 1

7: end if
8: 𝑖 ← 𝑖 + 1

9: end while
10: return a = 𝑎0 + 𝑎1𝑋 + · · · + 𝑎𝑛−1𝑋

𝑛−1

In practice, the matrix-generation step is fast, but it is not obvious to see that there

exists an upper bound on the number of XOF-output 12-bit integers that Parse needs to

look at before finding 256 coefficients smaller than 𝑞 to produce the output polynomial

in R𝑞 . In fact, as we will briefly discuss in Section 2, for Parse on uniformly random

input no such bound exists. However, the input to Parse is not uniform, but output of

SHAKE-128, on input (𝜌, 𝑖, 𝑗). This allows us to prove, in Section 3, that such an upper

bound does exist.

We remark that the generation of the matrix A is the only part of Kyber that makes

termination somewhat intricate to prove. All other parts execute in a fixed, input-

independent, number of steps.

2 Parse on random input
If we consider the Parse routine operating on uniformly random input, i.e., model

SHAKE-128 as a random oracle with infinite output length, we compute the probability

that Parse does not terminate after ℓ ⩾ 256 iterations of the main loop (Line 3) as

𝑃fail (ℓ) =
255∑︁
𝑖=0

(
ℓ

𝑖

)
𝑝𝑖 (1 − 𝑝)ℓ−𝑖 ,

where 𝑝 = 3329/4096 is the probability that a 12-bit unsigned integer is smaller than

𝑞 = 3329. The probability 𝑃fail quickly converges towards zero as ℓ grows; for example, for

ℓ = 560 (corresponding to 5 blocks of SHAKE-128 output), we have 𝑃fail (560) < 2.9·10
−79

.

This means that in practice, we are very unlikely to ever need more than 5 blocks of

Poly. J. Math. 1 (6) 3

SHAKE-128 output per entry of the matrix A. However, we also see that for any value ℓ ,

we have 𝑃fail (ℓ) > 0, which means that on uniformly random input to Parse we cannot

prove any upper bound on the execution time of Kyber’s key-generation.

3 Parse on SHAKE-128 output
In reality, the input of Parse is the output of SHAKE-128. SHAKE-128 is built from

the Keccak-𝑝 [1600, 24] permutation [8, Sec. 3.3]. Our reasoning does not require any

particular properties of this permutation, other than the fact that it is a permutation over

a 1600-bit state. In the following we will thus denote the Keccak-𝑝 [1600, 24] permutation

simply as 𝜋 . SHAKE-128 consists of two phases: the Absorb phase which “soaks up”

the input message into the state and the Squeeze phase, which generates a stream of

output bytes from the state. Both Absorb and Squeeze use the same split of the state

into 1344 rate bits (168 rate bytes) and 256 capacity bits.

In the specific use case in Kyber, SHAKE-128 takes as input the concatenation of the

32-byte random seed 𝜌 and indices 𝑖 and 𝑗 (each encoded as a single byte). The Absorb
phase on this input is fairly simple: It first produces the 200-byte state

𝑆−1 = (𝜌0, . . . , 𝜌31, 𝑖, 𝑗, 31, 0, . . . , 0, 128︸ ︷︷ ︸
168-byte rate

, 0, . . . , 0︸ ︷︷ ︸
32-byte capacity

),

and then computes 𝑆0 = 𝜋 (𝑆−1). The Squeeze phase produces output in blocks of 168

bytes by copying the rate part of 𝑆𝑖 to the output and then computing 𝑆𝑖+1 = 𝜋 (𝑆𝑖) for

𝑖 = 0, 1 . . .

We are now ready to prove the existence of an upper bound on the running time of

Parse(XOF(𝜌, 𝑖, 𝑗)) and, as a consequence, of Kyber. Our reasoning proceeds through

three steps.

1. We use that 𝜋 is a permutation and thus, a product of disjoint cycles.
1

This means

that starting from state 𝑆0, SHAKE-128 will permute the state in a cycle of some

length𝑚 as follows:

𝑆0

𝜋

−→ 𝑆1

𝜋

−→ 𝑆2

𝜋

−→ · · ·
𝜋

−→ 𝑆𝑚−1

𝜋

−→ 𝑆0.

The output of SHAKE-128 is the concatenation of the rate parts (i.e., the first 168

bytes) of the states 𝑆𝑖 . After 168𝑚 bytes the output repeats.

2. In order for Parse(XOF(𝜌, 𝑖, 𝑗)) to not terminate, the rate parts of the states

𝑆0, . . . , 𝑆𝑚−1, each interpreted as a sequence of 12-bit integers, must not con-

tain a single integer in {0, . . . , 3328}. If any state contained such a 12-bit integer

in its rate part, this integer would be part of the output of SHAKE-128 and 256 it-

erations through the permutation cycle (i.e., 256𝑚 invocations of 𝜋) would output

this integer 256 times, which is sufficient for Parse to terminate.

1
This fact alone shows that the intuition that the output of SHAKE-128 can be modeled as a random oracle

of infinite output length is incorrect.

Poly. J. Math. 1 (6) 4

3. What remains is to show that at least one of the states 𝑆0, . . . , 𝑆𝑚−1 necessarily

contains at least one 12-bit integer in {0, . . . , 3328} in its rate part. We do this by

observing that 𝑆𝑚−1 = 𝜋−1 (𝑆0) = 𝑆−1 is part of the permutation cycle. Now we

simply use the fact that we know large parts of 𝑆−1 and write its rate part as a

tuple of 12-bit integers as

(𝑟0, . . . , 𝑟20, 16𝑖 + (𝜌31 mod 16), 3840 + 𝑗, 1, 0, . . . , 0︸ ︷︷ ︸
87 times

, 2048),

where the values 𝑟0, . . . , 𝑟20 are determined by 𝜌 . As 𝑖 ∈ {0, 1, 2, 3} for all parame-

ter sets of Kyber, we see that 𝑆−1 contains not just one, but at least 90 values in

{0, . . . , 3328}. This guarantees that, after at most 3 iterations through the permu-

tation cycle (i.e., 3𝑚 invocations of 𝜋), SHAKE-128 will have produced sufficiently

many 12-bit integers in {0, . . . , 3328} for Parse to terminate.

Following this argumentation, we can easily derive an upper-bound on the maximum

number of steps that Kyber’s key-generation takes to terminate. As the state of Keccak

has 1600 bits, clearly, 𝑚 ⩽ 2
1600

. Hence, each call to Parse(XOF(𝜌, 𝑖, 𝑗) takes at most

3 · 21600
invocations of 𝜋 and, as there are 𝑘2

such calls, Kyber’s matrix generation is

guaranteed to terminate after 3𝑘2 · 21600
invocations of 𝜋 . This bound is highly non-tight

for multiple reasons:

• As Keccak attempts to approximate the characteristics of a random permutation

it is highly unlikely that it consists of only one cycle of length 2
1600

.

• In order to reach 𝑆−1, the permutation cycle starting from 𝑆0 must not produce

256 output values in {0, . . . , 3328} before reaching 𝑆−1; in order to reach 𝑆−1 twice,

it must not produce 166 such output values (no more than 83 per loop) from all

of the other states in the cycle; and in order to reach 𝑆−1 three times it must not

produce 76 such output values (no more than 25 per loop) from all of the other

states in the cycle. This means in particular that if we have all 2
1600

possible states

in one cycle, we will never reach 𝑆−1 from 𝑆0 before outputting 256 values in

{0, . . . , 3328}.

• Most importantly though, for short outputs of SHAKE-128 the random-oracle

heuristic is a good approximation, if the permutation underlying the sponge

construction is modeled as being randomly sampled [4]. Consequently, we con-

jecture that, for all values of 𝜌 ∈ {0, 1}256
and 𝑖, 𝑗 ∈ {0, 1, 2, 3}, the computation of

Parse(XOF(𝜌, 𝑖, 𝑗)) will terminate after 𝑐 < 8 ≪ 3 · 21600
invocations of Squeeze.

Unfortunately, as far as we can tell, the only way to prove this conjecture would

be to try all 2
260

possible inputs, which is clearly infeasible.

We explicitly encourage attempts by the community to disprove the conjecture and

offer a dinner in Casa de Chá da Boa Nova
2

as a prize for reporting a combination

of 𝜌 ∈ {0, 1}256
, and 𝑖, 𝑗 ∈ {0, 1, 2, 3}, such that more than 5 blocks (840 bytes, 5

invocations of Keccak-𝑝 [1600, 24]) of SHAKE-128(𝜌, 𝑖, 𝑗) output are needed for

Parse to terminate.

2https://www.casadechadaboanova.pt/en/

https://www.casadechadaboanova.pt/en/

Poly. J. Math. 1 (6) 5

References
[1] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum

key exchange – a new hope. In Proceedings of the 25th USENIX Security Symposium.

USENIX Association, 2016. Document ID: 0462d84a3d34b12b75e8f5e4ca032869,

http://cryptojedi.org/papers/#newhope.

[2] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-

shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS-Kyber: Algorithm specifications and supporting documentation (ver-

sion 3.02). Round-3 submission to the NIST PQC standardization project, 2021.

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf.

[3] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter

Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm

specifications and supporting documentation (version 3.1). Round-3 submission to

the NIST PQC standardization project, 2021. https://pq-crystals.org/dilithium/
data/dilithium-specification-round3-20210208.pdf.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the

indifferentiability of the sponge construction. In Nigel Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 181–197. Springer, 2008. https://doi.org/10.1007/978-3-540-78967-3_11.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak

reference. Submission to the NIST SHA-3 competition, 2011. https://keccak.team/
files/Keccak-reference-3.0.pdf.

[6] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.

Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure

module-lattice-based KEM. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, pages 353–367. IEEE, 2018. https://eprint.iacr.org/2017/634.

[7] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures from

module lattices. Transactions on Cryptographic Hardware and Embedded Systems,
pages 238–268, 2018. http://cryptojedi.org/papers/#dilithium.

[8] National Institute of Standards and Technology. FIPS PUB 202 – SHA-3 standard:

Permutation-based hash and extendable-output functions, 2015. http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[9] National Institute of Standards and Technology. FIPS PUB 203 (Initial Public Draft)

– module-lattice-based key-encapsulation mechanism standard, 2023. https://csrc.
nist.gov/pubs/fips/203/ipd.

http://cryptojedi.org/papers/#newhope
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://eprint.iacr.org/2017/634
http://cryptojedi.org/papers/#dilithium
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/203/ipd

	Introduction
	Parse on random input
	Parse on SHAKE-128 output

