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Abstract

Let 𝑏 ⩾ 2 be an integer and 𝑛 be such that the base 𝑏 representation of the 𝑛th
row of the Pascal triangle is palindromic. We show that 𝑛 < 𝑏 except if 𝑏 ∈ {2, 4, 6},
in which case 𝑛 = 𝑏 + 1 also works.
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1 Introduction
Recall that a finite sequence of numbers𝑎0, . . . , 𝑎𝑛 of length𝑛+1 is called a palindrome

if 𝑎𝑘 = 𝑎𝑛−𝑘 holds for all 𝑘 = 0, . . . , 𝑛. Perhaps the most well-known example of a
palindrome is the 𝑛 + 1st row of the Pascal triangle(

𝑛

0

) (
𝑛

1

)
. . .

(
𝑛

𝑘

)
. . .

(
𝑛

𝑛 − 𝑘

)
. . .

(
𝑛

𝑛 − 1

) (
𝑛

𝑛

)
. (1)

When 𝑏 ⩾ 2 and the base 𝑏 representation of a positive integer 𝑁 is

𝑁 = 𝑎0𝑏
𝑛 + 𝑎1𝑏

𝑛−1 + · · · + 𝑎𝑛−1𝑏 + 𝑎𝑛, where 𝑎𝑖 ∈ {0, . . . , 𝑏 − 1} with 𝑎0 ≠ 0,

then 𝑁 is a base 𝑏 palindrome if 𝑎0, . . . , 𝑎𝑛 is a palindrome. In this paper, we look at the
palindrome given by (1), write each one of the binomial coefficients in base 𝑏 ⩾ 2 and
ask what can we say about 𝑛 such that the string obtained by concatenating the base 𝑏
digits of the numbers from (1) form a base 𝑏 palindrome? A moment of reflection shows
the following:

Lemma 1.1. If 𝑛 is such that the string (1) is a base 𝑏 palindrome, then each
(
𝑛

𝑘

)
for

𝑘 = 0, 1, . . . , 𝑛 is a base 𝑏 palindrome as well.
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Proof. Arguing recursively for 𝑘 = 0, 1, . . ., one observes that in order for the string

given by (1) to be a base 𝑏 palindrome, all base 𝑏 digits of
(
𝑛

𝑘

)
read from left to right must

coincide with the base 𝑏 digits of
(

𝑛

𝑛 − 𝑘

)
=

(
𝑛

𝑘

)
read from right to left, which makes

the binomial coefficient
(
𝑛

𝑘

)
a base 𝑏 palindrome. □

Given 𝑏 ⩾ 2, let 𝑁 (𝑏) be the maximal 𝑛 such that the string (1) is a base 𝑏 palindrome.
In this paper, we show that 𝑁 (𝑏) exists and we give an upper bound on it.

Let’s try it when 𝑏 = 2. Then giving 𝑛 values 0, 1, 2, . . . , the Pascal triangle looks like

1
1 1

1 102 1
1 112 112 1

1 1002 1102 1002 1
. . . . . . . . . . . . . . . . . .

We note that for𝑛 = 3, the corresponding row is 1111112, which is certainly a palindrome.
This is the largest example:

Theorem 1.2. We have 𝑁 (2) = 3.

Proof. First note that since palindromes in base 2 start with 1, they must also end with
1, so they are odd. It is well-known that if 𝑛 is such that all elements of (1) are odd, then
𝑛 = 2𝑡 − 1 (see [3]). For 𝑡 = 1, 2, we get 𝑛 = 1, 3 and they both work. For 𝑡 = 3, we have

𝑛 = 7 which doesn’t work since
(
𝑛

3

)
= 1000112 is not a binary palindrome. For 𝑡 ⩾ 4,(

𝑛

2

)
=

(
2𝑡 − 1
2

)
= (2𝑡 − 1) (2𝑡−1 − 1) = 22𝑡−1 − 2𝑡 − 2𝑡−1 + 1 = 1 . . . 1010 . . . 012, (2)

where the first string of 1s has length 𝑡 − 2 > 1 and the string of 0s has length 𝑡 − 2 > 1.
Thus, the above number is not a binary palindrome. Hence, 𝑁 (2) = 3. □

Now let 𝑏 ⩾ 3.

Theorem 1.3. If 𝑏 ⩾ 3, then 𝑁 (𝑏) ⩽ 𝑏 − 1 except when 𝑏 = 4, 6 for which we have
𝑁 (𝑏) = 𝑏 + 1.

2 Motivation
Our result shows that 𝑁 (𝑏) < 𝑏 for all 𝑏 except for 𝑏 = 2, 4, 6 for which we have

𝑁 (𝑏) = 𝑏 + 1. Note that one can also give a lower bound on 𝑁 (𝑏). Namely, assume that
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𝑛 is such that (
𝑛

⌊𝑛/2⌋

)
< 𝑏.

Then all numbers in string (1) are base 𝑏 digits so that number is a base 𝑏 palindrome.

Since
(

𝑛

⌊𝑛/2⌋

)
< 2𝑛 , it follows that 𝑁 (𝑏) ⩾ log𝑏/log 2. Using the Stirling formula we

can do a bit better, namely

𝑁 (𝑏) ⩾ log𝑏
log 2

+ 𝑐 log log𝑏

for some positive constant 𝑐 . What is the true order of magnitude of𝑁 (𝑏)? We conjecture
that

𝑁 (𝑏) = 𝑂 (log𝑏).
Perhaps our method can be adapted to prove that for all 𝜀 > 0, we have 𝑁 (𝑏) ⩽ 𝜀𝑏 once
𝑏 > 𝑏 (𝜀). We leave this as a project for the interested reader. However, proving the
above conjecture seems difficult. We computed 𝑁 (𝑏) for all 𝑏 ⩽ 10000. We obtained
that

max{𝑁 (𝑏) : 𝑏 ⩽ 10, 000} = 19
with the maximum being obtained in 𝑏 = 322. In this case, the sequence (1) is given by

(1), (19), (171), (3) (3), (12) (12), (36) (36), (84) (84),
(156) (156), (234) (234), (286) (286), (234) (234), . . . , (1)

all in base 322. Further, 𝑁 (𝑏) ⩽ 15 for all 𝑏 ∈ [2, 10000]\{322}.

3 The proof

3.1 The case 𝒃 = 3

Recall Lucas’ theorem (see [2] page 271, or [3]). Let 𝑝 be a prime and

𝑛 = 𝑛0 + 𝑛1𝑝 + · · · + 𝑛𝑖𝑝𝑖 , where 𝑛0, . . . , 𝑛𝑖 ∈ {0, . . . , 𝑝 − 1} and 𝑛𝑖 ≠ 0.

Write 𝑘 ∈ [0, 𝑛] as

𝑘 = 𝑘0 + 𝑘1𝑝 + · · · + 𝑘𝑖𝑝𝑖 , where 𝑘0, . . . , 𝑘𝑖 ∈ {0, . . . , 𝑝 − 1}.

Then (
𝑛

𝑘

)
≡

𝑖∏
𝑗=0

(
𝑛 𝑗

𝑘 𝑗

)
(mod 𝑝) .

In particular, it follows that if 𝑛 is such that all numbers in (1) are coprime to 𝑝 , then
𝑛 𝑗 = 𝑝 − 1 for all 𝑗 = 0, 1, . . . , 𝑖 − 1. Indeed, if 𝑛 𝑗 < 𝑝 − 1 for some 𝑗 ∈ {0, 1, . . . , 𝑖 − 1},
we can then take 𝑘 := (𝑝 − 1)𝑝 𝑗 and then 𝑘 𝑗 = 𝑝 − 1 > 𝑛 𝑗 , so(

𝑛

𝑘

)
≡ 0 (mod 𝑝) .
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Assume now that𝑏 = 𝑝 = 3. Since all numbers in (1) are base 3 palindromes, in particular,
coprime to 3, we get that 𝑛 = 3𝑖+1 − 1 or 𝑛 = 2 · 3𝑖 − 1 for some 𝑖 ⩾ 0. The case 𝑖 = 0

gives 𝑛 = 1, 2 and they both work. Assume 𝑖 ⩾ 1. Since
(
𝑛

1

)
= 𝑛 is a base 3 palindrome,

we must have 𝑛 = 3𝑖+1 − 1. The case 𝑖 = 1 gives 𝑛 = 8 which does not work since(
8
4

)
= 21213 is not a base 3 palindrome. For 𝑖 ⩾ 2,(

𝑛

2

)
=
𝑛(𝑛 − 1)

2
=

(3𝑖+1 − 1) (3𝑖+1 − 2)
2

=
32𝑖+2 − 3𝑖+2

2
+ 1 = 11 . . . 10 . . . 013

where the string of 1s has length 𝑖 ⩾ 2 and the string of 0s has length 𝑖 + 1 > 1. Hence,
the above number is not a base 3 palindrome. This shows that 𝑁 (3) = 2.

3.2 The case 𝒃 = 4

Let 𝑛 be such that
(
𝑛

𝑘

)
is a base 4 palindrome for all 𝑘 = 0, . . . , 𝑛. In particular, none

of these numbers is a multiple of 4. It follows from a result of Davis and Webb [1] (see
also [4]) that 𝑛 = 2𝑖+1 − 1 or 𝑛 = 3 · 2𝑖 − 1 for some 𝑖 ⩾ 0. The cases 𝑖 = 0, 1 give
𝑛 = 1, 2, 3, 5 and they all satisfy the requirement. Assume 𝑛 = 2𝑖+1 − 1 and 𝑖 ⩾ 2. If 𝑖 is
even, then (

𝑛

1

)
= 𝑛 = 2𝑖+1 − 1 = 13 . . . 34

where the string of 3s has length 𝑖/2 ⩾ 1, and this is not a base 4 palindrome. On the
other hand, if 𝑖 is odd, then when 𝑖 = 3 we get 𝑛 = 24 − 1 = 15 and(

15
3

)
= 130134

is not a base 4 palindrome, while when 𝑖 ⩾ 5, the number shown at (2) is(
𝑛

2

)
= 22𝑖 + · · · + 2𝑖+2 + 2𝑖 + 1 = 13 · · · 3220 . . . 014,

where the strings of 3s and 0s are of lengths (𝑖 − 3)/2 ⩾ 1, so these numbers are not
base 4 palindromes, either. Finally, assume that 𝑛 = 3 · 2𝑖 − 1 for some 𝑖 ⩾ 2. Since 𝑛 is a
base 4 palindrome it follows by arguments similar to the previous ones that 𝑖 is odd. For
𝑖 = 3, 5 one gets 𝑛 = 23, 95 and(

23
3

)
= 1322234 and

(
95
3

)
= 2013022334

are not base 4 palindromes. Finally, if 𝑖 ⩾ 7, then(
𝑛

2

)
= (3 · 2𝑖 − 1) (3 · 2𝑖−1 − 1) = 22𝑖+2 + 22𝑖−2 + · · · + 2𝑖+3 + 2𝑖+1 + 2𝑖 + 2𝑖−1 + 1.
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For odd 𝑖 the above number is 1013 · · · 3130 · · · 01, where the first string of 3s and last
string of 0s have lengths (𝑖 − 5)/2 ⩾ 1 and (𝑖 − 3)/2 ⩾ 2, respectively, so the above
numbers are not base 4 palindromes. Thus, 𝑁 (4) = 5.

From now on, we assume that 𝑏 ⩾ 5.

3.3 Two technical lemmas

Let 𝑛 be any fixed positive integer. Let 𝑓𝑘 be the first (significant) digit of
(
𝑛

𝑘

)
in base

𝑏. That is,

𝑓𝑘 :=
⌊

𝑚

𝑏 ⌊log𝑚/log𝑏 ⌋

⌋
, where 𝑚 =

(
𝑛

𝑘

)
.

Lemma 3.1. Let 𝐿 ⩾ 1. Assume that 𝑛 ⩾ (𝐿 + 1) (8𝑏 + 7). Then there exist 𝐿 consecutive
integers 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1 all in [0, 𝑛] such that

1 + 1
𝑏
⩾

𝑛 − 𝑖

𝑖 + 1
⩾ 1 + 1

2𝑏
for all 𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1. (3)

Proof. The function 𝑥 ↦→ 𝑛 − 𝑥

𝑥 + 1
=
𝑛 + 1
𝑥 + 1

− 1 is decreasing for 𝑥 > 0. Hence, in order for
inequalities (3) to hold it suffices that

𝑛 − 𝑘

𝑘 + 1
⩽ 1 + 1

𝑏
and

𝑛 − (𝑘 + 𝐿 − 1)
𝑘 + 𝐿

⩾ 1 + 1
2𝑏

.

The left and right inequalities above are equivalent to

𝑘 ⩾
𝑛 − (1 + 1/𝑏)

2 + 1/𝑏 and 𝑘 ⩽
𝑛 − 𝐿(2 + 1/(2𝑏)) + 1

2 + 1/(2𝑏) .

The existence of such an integer 𝑘 is guaranteed if the difference between the upper
bound on the right inequality and the lower bound of the left inequality is at least 1: i.e.,
if

𝑛 − 𝐿(2 + 1/(2𝑏)) + 1
2 + 1/(2𝑏) − 𝑛 − (1 + 1/𝑏)

2 + 1/𝑏 ⩾ 1.

The last inequality is equivalent to

𝑛

2𝑏
− 𝐿

(
2 + 1

2𝑏

) (
2 + 1

𝑏

)
+
(
2 + 1

𝑏

)
+
(
2 + 1

2𝑏

) (
1 + 1

𝑏

)
⩾

(
2 + 1

2𝑏

) (
2 + 1

𝑏

)
.

The last inequality above is certainly satisfied when

𝑛

2𝑏
⩾ (𝐿 + 1)

(
2 + 1

2𝑏

) (
2 + 1

𝑏

)
,

which is equivalent to

𝑛 > (𝐿 + 1) (4𝑏 + 1)
(
2 + 1

𝑏

)
= (𝐿 + 1)

(
8𝑏 + 6 + 1

𝑏

)
.

The last inequality above is satisfied when 𝑛 ⩾ (𝐿 + 1) (8𝑏 + 7). □
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Lemma 3.2. Let 𝐿 ⩾ 1 be an integer. Assume 𝑛 ⩾ (𝐿 + 1) (8𝑏 + 7). Then there exist 𝐿
consecutive integers 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1 in [0, 𝑛] such that:

(i)

𝑓𝑖+1 ∈
{
{𝑓𝑖 , 𝑓𝑖 + 1} if 𝑓𝑖 ≠ 𝑏 − 1,
{𝑏 − 1, 1} if 𝑓𝑖 = 𝑏 − 1

for all 𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1.

(ii) Assume in addition that 𝑛 is such that string (1) is a base 𝑏 palindrome. Then the
following hold:

(ii.1) Assume 𝐿 ⩾ 2 and there exists 𝑖 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 +𝐿− 2} such that 𝑓𝑖 = 𝑓𝑖+1 ≠
𝑏/2. Then 𝑓𝑖+2 ≠ 𝑓𝑖 .

(ii.2) Assume 𝐿 ⩾ 4 and there exists 𝑖 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 4} such that 𝑓𝑖 = 𝑏/2.
Then one of 𝑓𝑖+1, 𝑓𝑖+2, 𝑓𝑖+3 or 𝑓𝑖+4 is different from 𝑏/2.

Proof. We work with 𝑘 guaranteed by Lemma 3.1.
(i). Let 𝑖 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1}. Write

(𝑓𝑖 + 1)𝑏𝑚 − 1 ⩾
(
𝑛

𝑖

)
⩾ 𝑓𝑖𝑏

𝑚 with some nonnegative integer 𝑚.

Since (
𝑛

𝑖 + 1

)
=

(
𝑛

𝑖

) (
𝑛 − 𝑖

𝑖 + 1

)
, (4)

we have(
𝑛 − 𝑖

𝑖 + 1

)
(𝑓𝑖 + 1)𝑏𝑚 − 1 >

(
𝑛 − 𝑖

𝑖 + 1

)
((𝑓𝑖 + 1)𝑏𝑚 − 1) ⩾

(
𝑛

𝑖 + 1

)
⩾

(
𝑛 − 𝑖

𝑖 + 1

)
𝑓𝑖𝑏

𝑚 .

Inequalities (3) imply (
1 + 1

𝑏

)
(𝑓𝑖 + 1)𝑏𝑚 − 1 >

(
𝑛

𝑖 + 1

)
> 𝑓𝑖𝑏

𝑚 .

Since 𝑓𝑖 ∈ {1, . . . , 𝑏 − 1}, assertion (i) of the lemma follows since

1 + 1
𝑏
=

(𝑏 − 1) + 2
(𝑏 − 1) + 1

⩽
𝑓𝑖 + 2
𝑓𝑖 + 1

.

For (ii), we assume that
(
𝑛

𝑗

)
is a base 𝑏 palindrome for all 𝑗 = 0, . . . , 𝑛. In particular,

looking at the first and last digits, we get that
(
𝑛

𝑖

)
≡ 𝑓𝑖 (mod 𝑏) for all 𝑖 ∈ {𝑘, 𝑘 +

1, . . . , 𝑘 + 𝐿 − 1}.
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(ii.1). Assume that 𝑓𝑖+1 = 𝑓𝑖 = 𝑐 , where 𝑐 ≠ 𝑏/2. Let 𝑑 := gcd(𝑐, 𝑏) and note that
𝑑 < 𝑏/2. Let 𝑏 := 𝑑𝑏1, 𝑐 := 𝑑𝑐1. Then 𝑐1 is invertible modulo 𝑏1 and 𝑏1 > 2. Since all

binomial coefficients
(
𝑛

𝑖

)
are base 𝑏 palindromes we get that(

𝑛

𝑖

)
≡
(
𝑛

𝑖 + 1

)
≡ 𝑐 (mod 𝑏) .

Since (
𝑛

𝑖 + 1

)
−
(
𝑛

𝑖

)
=

(
𝑛

𝑖

) (
𝑛 − 𝑖

𝑖 + 1
− 1

)
=

(
𝑛

𝑖

) (
𝑛 + 1
𝑖 + 1

− 2
)

it follows that
𝑐

(
𝑛 + 1
𝑖 + 1

− 2
)
≡ 0 (mod 𝑏) .

The above congruence implies

𝑐1

(
𝑛 + 1
𝑖 + 1

− 1
)
≡ 0 (mod 𝑏1) .

Since 𝑐1 is invertible modulo 𝑏1, we get that 𝑛 + 1 ≡ 2(𝑖 + 1) (mod 𝑏1). If 2 | (𝑛 + 1), then
2 | 𝑏1, therefore 𝑖 ≡ (𝑛−1)/2 (mod 𝑏1/2). Otherwise, if 2 ∤ 𝑛+1, then the above implies
𝑖 ≡ −1+2−1 (𝑛+1) (mod 𝑏1). At any rate, this argument shows that if 𝑓𝑖 = 𝑓𝑖+1 = 𝑐 ≠ 𝑏/2,
then 𝑖 is uniquely determined modulo 𝑏1/gcd(𝑏1, 2) > 1. In particular, if also 𝑓𝑖+2 = 𝑓𝑖+1
then 𝑖 and 𝑖 + 1 are congruent modulo 𝑏1/gcd(𝑏1, 2), a contradiction. So, 𝑓𝑖+2 ≠ 𝑓𝑖 .

(ii.2). Assume that 𝑓𝑖 = 𝑓𝑖+1 = 𝑓𝑖+2 = 𝑓𝑖+3 = 𝑓𝑖+4 = 𝑏/2. It then follows that(
𝑏

2
+ 1

)
𝑏𝑚 − 1 ⩾

(
𝑛

𝑖

)
⩾

(
𝑏

2

)
𝑏𝑚 .

Using repeatedly inequalities (4) and (3) we get(
𝑏

2
+ 1

) (
1 + 1

𝑏

)
𝑏𝑚 − 1 >

(
𝑛

𝑖 + 1

)
>

𝑏

2

(
1 + 1

2𝑏

)
𝑏𝑚(

𝑏

2
+ 1

) (
1 + 1

𝑏

)2
𝑏𝑚 − 1 >

(
𝑛

𝑖 + 2

)
>

𝑏

2

(
1 + 1

2𝑏

)2
𝑏𝑚(

𝑏

2
+ 1

) (
1 + 1

𝑏

)3
𝑏𝑚 − 1 >

(
𝑛

𝑖 + 3

)
>

𝑏

2

(
1 + 1

2𝑏

)3
𝑏𝑚(

𝑏

2
+ 1

) (
1 + 1

𝑏

)4
𝑏𝑚 − 1 >

(
𝑛

𝑖 + 4

)
>

𝑏

2

(
1 + 1

2𝑏

)4
𝑏𝑚 .

Since (
𝑏

2

) (
1 + 1

2𝑏

)4
>

𝑏

2

(
1 + 2

𝑏

)
=
𝑏

2
+ 1,

we get that it is not possible that 𝑓𝑖+4 = 𝑏/2. □
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3.4 Quadratic bounds on 𝑵 (𝒃)

We have the following lemma.

Lemma 3.3. Assume 𝑏 ⩾ 5. Then

𝑁 (𝑏) < 16𝑏2 + 30𝑏 + 14. (5)

Proof. Assume that the inequality (5) does not hold for some 𝑏 ⩾ 5. So, let us assume
that the positive integer 𝑛 satisfies 𝑛 ⩾ 16𝑏2 + 30𝑏 + 14 = (2𝑏 + 2) (8𝑏 + 7) and is such that
all numbers in list (1) are base 𝑏 palindromes. Lemma 3.2 with 𝐿 := 2𝑏 + 1 shows that
there are at least 2𝑏 + 1 consecutive integers 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1 in [0, 𝑛] such that the
numbers 𝑓𝑖 satisfy (i), (ii.1) and (ii.2) of Lemma 3.2 for all 𝑖 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1}. We
first show that 𝑏 | 𝑛 + 1. Indeed, from the conditions of Lemma 3.2, it follows that there
exists 𝑖 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1} such that 𝑓𝑖 = 𝑏 − 1 and 𝑓𝑖+1 = 1. Reducing formula (4)
modulo 𝑏, we get

1 ≡ 𝑓𝑖+1 (mod 𝑏) ≡ 𝑓𝑖

(
𝑛 − 𝑖

𝑖 + 1

)
(mod 𝑏) ≡ −𝑛 − 𝑖

𝑖 + 1
≡ −𝑛 + 1

𝑖 + 1
+ 1 (mod 𝑏) .

This shows that 𝑏 | 𝑛 + 1. We next show that 𝜙 (𝑏) ⩽ 2, where 𝜙 is the Euler function.
Let 𝑗 ∈ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1} be minimal such that 𝑏 | 𝑗 . Clearly, 𝑗 − 𝑘 ⩽ 𝑏 − 1.
Since 𝐿 ⩾ 2𝑏 + 1, it follows that { 𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑏 − 1} ⊂ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1}. Let
1 = 𝑗1 < 𝑗2 < · · · < 𝑗𝜙 (𝑏 ) = 𝑏 − 1 be all the positive integers smaller than 𝑏 which are
coprime to 𝑏. Reducing equation (4) modulo 𝑖 = 𝑗 + 𝑗𝑠 − 1, we get

𝑓𝑗+𝑗𝑠 ≡ 𝑓𝑗+𝑗𝑠−1

(
𝑛 − 𝑖

𝑖 + 1

)
(mod 𝑏) ≡ 𝑓𝑗+𝑗𝑠−1

(
𝑛 + 1
𝑗 + 𝑗𝑠

− 1
)
(mod 𝑏) .

Since 𝑏 | 𝑛 + 1 and 𝑗 + 𝑗𝑠 is coprime to 𝑏, we get that 𝑓𝑗+𝑗𝑠 ≡ −𝑓𝑗+𝑗𝑠−1 (mod 𝑏). In
particular, 𝑓𝑖+1 ≡ −𝑓𝑖 (mod 𝑏), whenever 𝑖 + 1 is coprime to 𝑏.

We now investigate in how many ways can the above congruence hold. Assume 𝑖 is
coprime to 𝑏.

(1) 𝑓𝑖 = 1 and 𝑓𝑖−1 = 𝑏 − 1. This can certainly occur.

(2) 𝑓𝑖 = 𝑓𝑖−1. Since also 𝑓𝑖 ≡ −𝑓𝑖−1 (mod 𝑏), we get that 2𝑓𝑖 ≡ 0 (mod 𝑏). Thus, 𝑏 is
even and 𝑓𝑖 = 𝑏/2.

(3) 𝑓𝑖 = 𝑓𝑖−1 + 1. In this case the above congruence forces 2𝑓𝑖 ≡ 1 (mod 𝑏), so 𝑏 is
odd and 𝑓𝑖 = (𝑏 + 1)/2.

Let us now conclude that 𝜙 (𝑏) ⩽ 2. Assume first that 𝑏 is odd. There are 𝜙 (𝑏) indices
𝑖 in { 𝑗 + 1, . . . , 𝑗 + 𝑏 − 1} which are coprime to 𝑏. If 𝑖 is one of these indices, then
𝑓𝑖 ∈ {1, (𝑏 + 1)/2}. Further, if 𝑓𝑖 = 1, then 𝑓𝑖−1 = 𝑏 − 1 ∉ {1, (𝑏 + 1)/2}, so 𝑖 − 1 is not
coprime to 𝑏. From Lemma 3.2 (i), it follows that each of the two values 1 and (𝑏 + 1)/2
can be taken by at most one index 𝑖 which is coprime to 𝑏. Thus, 𝜙 (𝑏) ⩽ 2, which is
impossible since 𝑏 ⩾ 5 is odd. Assume next that 𝑏 is even. Then the above argument
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shows that 𝑓𝑖 ∈ {1, 𝑏/2}. Further, if 𝑓𝑖 = 1, then 𝑓𝑖−1 = 𝑏 − 1 ∉ {1, 𝑏/2}, so there is at
most one such index 𝑖 coprime to 𝑏. Further, if 𝑓𝑖 = 𝑏/2, then 𝑓𝑖−1 = 𝑏/2. Lemma 3.2 (ii.2)
shows that there are at most three such indices 𝑖 and they are all consecutive. But out of
at most 3 consecutive numbers, at most 2 of them are odd, so possibly coprime to 𝑏, the
remaining ones being even so not coprime to 𝑏. This argument show that 𝜙 (𝑏) ⩽ 3, and
since 𝜙 (𝑏) is even for all 𝑏 ⩾ 5, we get that 𝜙 (𝑏) ⩽ 2. The only possibility is therefore
𝑏 = 6, which we next discard.

We take 𝑏 = 6 and look at the numbers 𝑖 ∈ { 𝑗, 𝑗 + 1, 𝑗 + 2, 𝑗 + 3, 𝑗 + 4, 𝑗 + 5}. From the
above arguments, 𝑓𝑗+1 ∈ {1, 3} and if 𝑓𝑗+1 = 1, then 𝑓𝑗 = 5 and if 𝑓𝑗+1 = 3, then 𝑓𝑗 = 3.
So, 𝑓𝑗 ∈ {3, 5}. Assume first that 𝑓𝑗 = 3. Then also 𝑓𝑗+1 = 3. Next since 3 ∤ 𝑗 + 2, we have

𝑓𝑗+2 ≡ 𝑓𝑗+1

(
𝑛 − 𝑗 − 1
𝑗 + 2

)
(mod 3) ≡ 𝑓𝑗+1

(
𝑛 + 1
𝑗 + 2

− 1
)
(mod 3)

≡ −𝑓𝑗+1 (mod 3) ≡ 0 (mod 3) ,

showing that 𝑓𝑗+2 = 3. Next 2 ∤ ( 𝑗 + 3), so

𝑓𝑗+3 ≡ 𝑓𝑗+2

(
𝑛 − 𝑗 − 2
𝑗 + 3

)
(mod 2) ≡ 𝑓𝑗+2

(
𝑛 + 1
𝑗 + 3

− 1
)
(mod 2)

≡ −𝑓𝑗+2 (mod 2) ≡ 1 (mod 2) ,

showing that 𝑓𝑗+3 is odd. By Lemma 3.2 (i) it follows that 𝑓𝑗+3 = 3. Since 3 ∤ 𝑗 + 4, it
follows that

𝑓𝑗+4 ≡ 𝑓𝑗+3

(
𝑛 − 𝑗 − 3
𝑗 + 4

)
(mod 3) ≡ 𝑓𝑗+3

(
𝑛 + 1
𝑗 + 4

− 1
)
(mod 3)

≡ −𝑓𝑗+3 (mod 3) ≡ 0 (mod 3) .

Hence, 𝑓𝑗+4 = 3, which contradicts Lemma 3.2 (ii.2).
Assume now that 𝑓𝑗 = 5 and 𝑓𝑗+1 = 1. Since 3 ∤ 𝑗 + 2, it follows that

𝑓𝑗+2 ≡ 𝑓𝑗+1

(
𝑛 − 𝑗 − 1
𝑗 + 2

)
(mod 3) ≡ 𝑓𝑗+1

(
𝑛 + 1
𝑗 + 2

− 1
)
(mod 3)

≡ −𝑓𝑗+1 (mod 3) ≡ 2 (mod 3) .

By Lemma 3.2 (i) it follows that 𝑓𝑗+2 = 2. Since 2 ∤ ( 𝑗 + 3), it follows that

𝑓𝑗+3 ≡ 𝑓𝑗+2

(
𝑛 − 𝑗 − 2
𝑗 + 3

)
(mod 2) ≡ 𝑓𝑗+2

(
𝑛 + 1
𝑗 + 3

− 1
)
(mod 2)

≡ −𝑓𝑗+2 (mod 2) ≡ 0 (mod 2) .

Hence, 𝑓𝑗+3 = 2. Since 3 ∤ 𝑗 + 4, we get

𝑓𝑗+4 ≡ 𝑓𝑗+3

(
𝑛 − 𝑗 − 3
𝑗 + 4

)
(mod 3) ≡ 𝑓𝑗+3

(
𝑛 + 1
𝑗 + 4

− 1
)
(mod 3)

≡ −𝑓𝑗+3 (mod 3) ≡ 1 (mod 3) .
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However, by (i) of Lemma 3.2, we must have 𝑓𝑗+4 ∈ {2, 3} and none of these numbers is
congruent to 1 modulo 3. Thus, the inequality (5) must hold for 𝑏 = 6 as well. □

We next use Lemma 3.3 to prove the following.

Lemma 3.4. We have
𝑁 (𝑏) < 𝑏2. (6)

Proof. One can use inequality (5) to check that 𝑁 (𝑏) < 𝑏2 for all 𝑏 ⩽ 300. Assume now
that 𝑏 > 300. Suppose inequality (6) fails for some such 𝑏. Let 𝑛 ⩾ 𝑏2 be such that all
numbers in (1) are base 𝑏 palindromes. By inequality (5), we have

𝑏2 ⩽ 𝑛 < 16𝑏2 + 30𝑏 + 14 < 𝑏3.

Since
(
𝑛

1

)
is a base 𝑏 palindrome, we get that

𝑛 = 𝑎𝑏2 + 𝑎′𝑏 + 𝑎 for some 𝑎 ∈ {1, . . . , 16} and 𝑎′ ∈ {0, 1, . . . , 𝑏 − 1}.

We now exploit the fact that (
𝑛

2

)
=
𝑛(𝑛 − 1)

2
is a base 𝑏 palindrome as well. Note that

2
(
𝑛

2

)
− 2

(
𝑎

2

)
= 𝑛(𝑛 − 1) − 𝑎(𝑎 − 1) = (𝑛 − 𝑎) (𝑛 + 𝑎 − 1) ≡ 0 (mod 𝑏) .

It follows that
𝑓2 ∈

{
𝑎(𝑎 − 1)

2
,
𝑎(𝑎 − 1)

2
+ 𝑏

2

}
. (7)

Indeed, the above is clear when 𝑏 is odd, while when 𝑏 is even, we have that

𝑏

2
> 150 >

16 · 15
2

⩾
𝑎(𝑎 − 1)

2
;

hence,
𝑎(𝑎 − 1)

2
+ 𝑏

2
< 𝑏,

so the number on the left is a digit in base 𝑏. On the other hand,

𝑎𝑏2 + 1 ⩽ 𝑛 < (𝑎 + 1)𝑏2.

Hence,
𝑎2

2
𝑏4 <

(
𝑛

2

)
<

(𝑎 + 1)2
2

𝑏4.

Since 𝑏 > 300 > 172 > 172/2 ⩾ (𝑎 + 1)2/2, it follows that

𝑓2 ∈
[ ⌊
𝑎2

2

⌋
,
(𝑎 + 1)2

2

)
. (8)
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Now we note that (7) and (8) contradict each other. Indeed, say 𝑓2 = 𝑎(𝑎 − 1)/2 + 𝑏/2.
Then

𝑓2 ⩾
𝑏

2
>

172

2
⩾

(𝑎 + 1)2
2

contradicting (8). Assume next that 𝑓2 = 𝑎(𝑎 − 1)/2. In this case

𝑎(𝑎 − 1)
2

⩽
𝑎2 − 1

2
⩽

⌊
𝑎2

2

⌋
holds always except when 𝑎 = 1. However, if 𝑎 = 1, then formula (7) shows that 𝑓2 = 𝑏/2
and we saw that this is not possible either. □

3.5 Linear bounds on 𝑵 (𝒃)

From the previous section, we know that if 𝑏 ⩾ 5 and 𝑛 is such that string (1) is a
base 𝑏 palindrome, then 𝑛 < 𝑏2. One can use this and calculations to show that 𝑁 (5) = 4
and 𝑁 (6) = 7. From now on, we assume that 𝑏 ⩾ 7. Throughout this section, we
assume that 𝑛 > 𝑏. Since 𝑛 is a base 𝑏 palindrome, it follows that 𝑛 = 𝑎(𝑏 + 1) for some
𝑎 ∈ {1, . . . , 𝑏 − 1}. We have the following lemma.

Lemma 3.5. (1) Let 𝑑 = gcd(𝑎 + 1, 𝑏). Then 𝑑 > 1.

(2) If 𝑑 = 2, then either 4 | (𝑛 + 1) or 𝑎 = 1.

Proof. We use the fact that (
𝑛

𝑘

)
=
𝑛 − 𝑘 + 1

𝑘

(
𝑛

𝑘 − 1

)
(9)

with 𝑛 = 𝑎(𝑏 + 1) and 𝑘 = 𝑎 + 1 ⩽ 𝑏 < 𝑛. We then get(
𝑛

𝑎 + 1

)
=

𝑎𝑏

𝑎 + 1

(
𝑛

𝑎

)
.

From the above equation it follows that if gcd(𝑎 + 1, 𝑏) = 1, then
(

𝑛

𝑎 + 1

)
is a multiple of

𝑏 and in particular it cannot be a base 𝑏 palindrome. Hence, 𝑑 > 1.
(2) We assume 𝑑 = 2. If 2∥𝑏 and 2∥𝑎 + 1, then 𝑛 + 1 = 𝑎𝑏 + (𝑎 + 1) is a multiple of 4.

We now show that this is the only possible situation. Indeed, for if not, either 4 | (𝑎 + 1),
or 4 | 𝑏. We use (9) with 𝑛 = 𝑎(𝑏 + 1) and 𝑘 = 𝑏 + 𝑎 + 1. Note that 𝑘 < 𝑛 if 𝑎 ⩾ 2. Then(

𝑛

𝑎 + 𝑏 + 1

)
=

(𝑎 − 1)𝑏
𝑏 + 𝑎 + 1

(
𝑛

𝑎 + 𝑏

)
.

Clearly, gcd(𝑏 + 𝑎 + 1, 𝑏) = gcd(𝑎 + 1, 𝑏) = 2. In this case, 2∥𝑏 + 𝑎 + 1 and also 2 | (𝑎 − 1),

which shows that
(

𝑛

𝑎 + 𝑏 + 1

)
is a multiple of 𝑏, so not a base 𝑏 palindrome. □
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We can now provide a linear bound on 𝑁 (𝑏).

Lemma 3.6. If 𝑏 ⩾ 7, then
𝑁 (𝑏) < 96𝑏 + 84.

Proof. Assume that for some 𝑏 ⩾ 7 and some 𝑛 ⩾ 96𝑏 + 84 = 12(8𝑏 + 7), we have that all
the numbers in (1) are base 𝑏 palindromes. By Lemma 3.2 with 𝐿 := 11, it follows that
there exists an integer 𝑘 such that {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐿 − 1} ⊂ [0, 𝑛] and conditions (i),
(ii.1) and (ii.2) are satisfied. In order to achieve a contradiction we perform an analysis
based on the prime factors of 𝑑 = gcd(𝑎 + 1, 𝑏). We distinguish the following three cases.

Case 1. 𝑑 is a power of 2. In this case, either 4 | 𝑑 or 𝑑 = 2. In both cases, by Lemma
3.5, we have 4 | 𝑛 + 1. Since 𝐿 = 11, it follows that there exists two integers 𝑗 such that
4 | 𝑗 and { 𝑗, 𝑗 + 1, 𝑗 + 2} ⊂ {𝑘, 𝑘 + 1, . . . , 𝑘 + 10}. Let them be 𝑗1 and 𝑗2 with 𝑗2 = 𝑗1 + 4.
Let 𝑗 ∈ { 𝑗1, 𝑗2}. Since 2 ∤ ( 𝑗 + 1) but 2 | 𝑏 and 2 | (𝑛 + 1) one can reduce relation (4) for
𝑖 = 𝑗 modulo 2 to get

𝑓𝑗+1 ≡ 𝑓𝑗

(
𝑛 − 𝑗

𝑗 + 1

)
(mod 2) ≡ 𝑓𝑗

(
𝑛 + 1
𝑗 + 1

− 1
)
≡ −𝑓𝑗 (mod 2) .

Since 2∥( 𝑗 + 2) but 4 | (𝑛 + 1), it follows that

𝑓𝑗+2 ≡ 𝑓𝑗+1

(
𝑛 − 𝑗 − 1
𝑗 + 2

)
(mod 2) ≡ 𝑓𝑗+1

(
𝑛 + 1
𝑗 + 2

− 1
)
(mod 2)

≡ −𝑓𝑗+1 (mod 2) ≡ 𝑓𝑗 (mod 2) .

Since 2 ∤ ( 𝑗 + 3), one may iterate the above argument one more time to get that
𝑓𝑗+3 ≡ 𝑓𝑗 (mod 2). Hence, 𝑓𝑗 ≡ 𝑓𝑗+1 ≡ 𝑓𝑗+2 ≡ 𝑓𝑗+3 (mod 2). By Lemma 3.2 (i), (ii.1) and
(ii.2), the only way this can happen is that 𝑓𝑗 = 𝑓𝑗+1 = 𝑏 − 1 and 𝑓𝑗+2 = 𝑓𝑗+3 = 1, or
𝑓𝑗 = 𝑓𝑗+1 = 𝑓𝑗+2 = 𝑓𝑗+3 = 𝑏/2. Hence, the only possibilities are 𝑓𝑗1 = 𝑏 − 1 and 𝑓𝑗2 = 𝑏/2
or viceversa. Assume 𝑓𝑗1 = 𝑏 − 1 and 𝑓𝑗2 = 𝑓𝑗1+4 = 𝑏/2. Since 𝑓𝑗1+2 = 𝑓𝑗1+3 = 1, it follows
that 𝑏/2 = 𝑓𝑗1+4 ⩽ 2, so 𝑏 ⩽ 4, a contradiction. The same contradiction is reached if one
assumes that 𝑓𝑗1 = 𝑏/2 and 𝑓𝑗2 = 𝑏 − 1.

Case 2. The largest prime factor of 𝑑 is 3. It then follows that 3 | gcd(𝑛 + 1, 𝑏). Since
in our case we have 𝐿 = 11 > 8, it follows that there exist two integers 𝑗 such that 3 | 𝑗
and { 𝑗, 𝑗 + 1} ⊂ {𝑘, 𝑘 + 1, . . . , 𝑘 + 10}. We denote them by 𝑗1 and 𝑗2 with 𝑗2 = 𝑗1 + 3. Let
𝑗 ∈ { 𝑗1, 𝑗2}. Since 3 | (𝑛 + 1), 3 | 𝑏 but 3 ∤ ( 𝑗 + 1), it follows, by reducing formula (4)
with 𝑖 = 𝑗 + 1 modulo 3, that

𝑓𝑗+1 ≡ 𝑓𝑗

(
𝑛 − 𝑗

𝑗 + 1

)
(mod 3) ≡ 𝑓𝑗

(
𝑛 + 1
𝑗 + 1

− 1
)
≡ −𝑓𝑗 (mod 3) .

Since 3 ∤ ( 𝑗 + 2), one can iterate the above argument to get that

𝑓𝑗+2 ≡ 𝑓𝑗+1

(
𝑛 − 𝑗 − 1
𝑗 + 2

)
(mod 3) ≡ 𝑓𝑗+1

(
𝑛 + 1
𝑗 + 2

− 1
)
≡ −𝑓𝑗+1 ≡ 𝑓𝑗 (mod 3) .
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Hence, 𝑓𝑗 ≡ −𝑓𝑗+1 (mod 3) ≡ 𝑓𝑗+2 (mod 3). From Lemma 3 (i), (ii.1) and (ii.2), one
gets that the only way this can happen is either 𝑓𝑗 = 𝑏 − 1, 𝑓𝑗+1 = 1, 𝑓𝑗+2 = 2 or
𝑓𝑗 = 𝑓𝑗+1 = 𝑓𝑗+2 = 𝑏/2. Hence, either 𝑓𝑗1 = 𝑏 − 1 and 𝑓𝑗2 = 𝑏/2 or viceversa. Assume, for
example, that 𝑓𝑗1 = 𝑏 − 1. Then 𝑓𝑗1+2 = 2 and 𝑓𝑗1+3 = 𝑓𝑗2 = 𝑏/2. Since by Lemma 3.2 i) we
have 𝑓𝑗2 ⩽ 3, we get 𝑏 ⩽ 6, a contradiction. A similar contradiction is obtained when
𝑓𝑗1 = 𝑏/2 and 𝑓𝑗2 = 𝑏 − 1.

Case 3. 𝑑 is divisible by a prime 𝑝 ⩾ 5. Since 𝑝 ⩾ 5 and 𝐿 = 11, it follows that there
exist five consecutive integers 𝑗, 𝑗 + 1, 𝑗 + 2, 𝑗 + 3, 𝑗 + 4 in {𝑘, 𝑘 + 1, . . . , 𝑘 + 10} such that
none of the four numbers 𝑗 + 1, 𝑗 + 2, 𝑗 + 3, 𝑗 + 4 is a multiple of 𝑝 . Since 𝑝 | (𝑛 + 1), 𝑝 | 𝑏
but 𝑝 ∤ ( 𝑗 + 1), it follows by reducing formula (4) for 𝑖 = 𝑗 modulo 𝑝 , that

𝑓𝑗+1 ≡ 𝑓𝑗

(
𝑛 − 𝑗

𝑗 + 1

)
(mod 𝑝) ≡ 𝑓𝑗

(
𝑛 + 1
𝑗 + 1

− 1
)
(mod 𝑝) ≡ −𝑓𝑗 (mod 𝑝) .

Since 𝑝 does not divide any of 𝑗 + 2, 𝑗 + 3, 𝑗 + 4 we may iterate the above argument and
get

𝑓𝑗+2 ≡ −𝑓𝑗+1 (mod 𝑝) ≡ 𝑓𝑗 (mod 𝑝) ,
𝑓𝑗+3 ≡ −𝑓𝑗+2 (mod 𝑝) ≡ −𝑓𝑗 (mod 𝑝) ,
𝑓𝑗+4 ≡ −𝑓𝑗+3 (mod 𝑝) ≡ 𝑓𝑗 (mod 𝑝) .

If any of those digits 𝑓𝑖 for 𝑖 ∈ { 𝑗, 𝑗 + 1, 𝑗 + 2, 𝑗 + 3, 𝑗 + 4} is divisible by 𝑝 then all of them
are. Since 𝑝 | 𝑏, it follows, by Lemma 3.2 (i) and (ii.1) that all of them are equal. This
is impossible by condition (ii.2) of Lemma 3.2. Hence, none of them is divisible by 𝑝 .
In this case, the digits 𝑓𝑗 , 𝑓𝑗+2, 𝑓𝑗+4 are distinct and congruent modulo 𝑝 . In particular,
both |𝑓𝑗+2 − 𝑓𝑗 | and |𝑓𝑗+4 − 𝑓𝑗+2 | are nonzero multiples of 𝑝 . However, by Lemma 3.2 (i),
(ii.1) and (ii.2) at least one of those differences is at most 2, which contradicts the fact
that 𝑝 > 3. □

3.6 The conclusion of the proof of the theorem
We are now ready to prove that 𝑁 (𝑏) < 𝑏 for 𝑏 ⩾ 7. Indeed assume that this

inequality fails for some 𝑏 ⩾ 7. Assume 𝑛 > 𝑏 is such that all numbers in string (1)
are base 𝑏 palindromes. From Lemma 3.5, we get that 𝑛 = 𝑎(𝑏 + 1), where 𝑎 < 96. We
distinguish two cases.

Case 1. 𝑎 = 1. In this case, 𝑛 = 𝑏 + 1. Since(
𝑛

2

)
=
𝑛(𝑛 − 1)

2
=

(𝑏 + 1)𝑏
2

,

is a base 𝑏 palindrome it follows that 𝑏 is even. Let 𝑟 denote the residue of 𝑏 by division
by 6. We now compute (

𝑛

3

)
=
𝑛(𝑛 − 1) (𝑛 − 2)

6
=
𝑏 (𝑏2 − 1)

6
.
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If 𝑟 = 0, then the base 𝑏 representation of the above number is(
𝑛

3

)
=

(
𝑏

6
− 1

)
𝑏2 + (𝑏 − 1)𝑏 + 5𝑏

6
,

and we see that the first and last digits in base 𝑏 are different. Assume now that 𝑟 ≠ 0.
Since 𝑏 is even, so is 𝑟 , so 𝑟 ∈ {2, 4}. In this case the base 𝑏 representation is(

𝑛

6

)
=

(
𝑏 − 𝑟

6

)
𝑏2 +

(
𝑟𝑏 − 1

6
− 1
2

)
𝑏 + 𝑏

2
.

and again the first and last digits do not coincide, so the above number is not a base 𝑏
palindrome.

Case 2. 𝑎 > 1. The arguments in this case are similar to the arguments used in the
proof of Lemma 3.4. First we check computationally that 𝑁 (𝑏) < 𝑏 for all 𝑏 < 10000 (in
fact, 𝑁 (𝑏) ⩽ 19 for all 𝑏 ⩽ 10000). From now on, assume that 𝑏 ⩾ 10000. Since

𝑎(𝑏 + 1) = 𝑛 < 96𝑏 + 84 < 96(𝑏 + 1),

it follows that 𝑎 ⩽ 95. Since

2
(
𝑛

2

)
− 2

(
𝑎

2

)
= (𝑛 − 𝑎) (𝑛 + 𝑎 − 1) ≡ 0 (mod 𝑏) ,

it follows that
𝑓2 ∈

{
𝑎(𝑎 − 1)

2
,
𝑎(𝑎 − 1)

2
+ 𝑏

2

}
. (10)

On the other hand, since 𝑎𝑏 + 1 < 𝑛 < (𝑎 + 1)𝑏, it follows that

𝑎2

2
𝑏2 <

(
𝑛

2

)
<

(𝑎 + 1)2
2

𝑏2.

The above inequality combined with the fact that 𝑏 ⩾ 10000 > 962/2 ⩾ (𝑎 + 1)2/2 shows
that

𝑓2 ∈
[ ⌊
𝑎2

2

⌋
,
(𝑎 + 1)2

2

)
. (11)

We now note that inequalities (10) and (11) contradict each other. Indeed, assume
𝑓2 = 𝑎(𝑎 − 1)/2. We then get that

𝑎2 − 1
2

⩽
⌊
𝑎2

2

⌋
⩽

𝑎(𝑎 − 1)
2

,

a contradiction. If 𝑓2 = 𝑎(𝑎 − 1)/2 + 𝑏/2, then

𝑓2 ⩾
𝑏

2
⩾

10000
2

>
962

2
⩾

(𝑎 + 1)2
2

,

a contradiction. The theorem is proved.
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