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Institut de Mathématiques de Toulon - IMATH
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Abstract
We prove that polynomials of degree 10 over finite fields of even characteristic

with some conditions on their coefficients have a differential uniformity greater
than or equal to 6 over F2𝑛 for all 𝑛 sufficiently large.
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1 Introduction
Differential uniformity of polynomials over finite fields is a measure of non-linearity

and resistance against differential attacks in cryptography. Formally, the differential
uniformity 𝛿F𝑞 (𝑓 ) of a polynomial 𝑓 ∈ F𝑞 [𝑥] over the finite field F𝑞 with 𝑞 elements is
defined as the maximum number of solutions of the set of equations 𝑓 (𝑥 +𝛼) − 𝑓 (𝑥) = 𝛽

where 𝛼 and 𝛽 belong to F𝑞 with 𝛼 non-zero (see [7] where it has been first introduced).
For practical cryptographic applications, a particular study has been made over finite
fields of characteristic 2, which will be the framework of our work here. Polynomials over
F2𝑛 with low differential uniformity are highly sought after, especially those with the
smallest possible one, namely equal to 2. The functions associated with these polynomials
are called APN (Almost Perfect Nonlinear) functions, and exhaustive research suggests
that they are very rare. In fact, Voloch proved in [10] that almost all polynomials have a
differential uniformity essentially equal to their degree. Even better, Aubry, Herbaut
and Voloch in [2] showed that, for a set of specific odd degrees, not almost all but indeed
all polynomials of these degrees have maximal differential uniformity for 𝑛 sufficiently
large. Moreover, these results have been extended in [3] to infinitely many explicit even
degrees and in [4] to some trinomials of degree divisible by 4.

This work is partially supported by the French Agence Nationale de la Recherche through the SWAP
project under Contract ANR-21-CE39-0012.
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The study of the differential uniformity of low-degree polynomials was conducted
by Voloch in [10]. Apart from the trivial case of polynomials of degrees less than 4,
he addressed the cases of degrees 5, 6, and 7 (the case of degree 8 is reduced to that of
lower degrees), and he stopped at degree 9.

The main result of our paper concerns polynomials of degree 10 over finite fields of
even characteristic. The methods developed in [3] and [4], although applicable to even-
degree polynomials, cannot be applied mutatis mutandis to our situation. Therefore, we
are led to develop here a specific approach that does not rely on the description of the
locus of polynomials with non-distinct critical values, as was the case in [2], [3] and [4].

Precisely, we prove the following results.

Theorem (Theorems 3.2 and 4.6). Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of
degree 10.

1) If

(i) 𝑎1𝑎3 ≠ 0, and

(ii) TrF2𝑛 /F2

(
𝑎1𝑎4+𝑎5
𝑎2

1𝑎3

)
= 0, and

(iii) 𝑎2
1𝑎

2
4 + 𝑎2

5 + 𝑎7
1𝑎3 + 𝑎4

1𝑎
2
3 + 𝑎2

1𝑎3𝑎5 + 𝑎3𝑎7 ≠ 0,

then 𝛿F2𝑛 (𝑓 ) ⩾ 6 if 𝑛 is sufficiently large (namely if 𝑛 ⩾ 13).

2) Suppose that 𝑎1 = 𝑎3 = 0 and suppose that there exists 𝛼 ∈ F∗2𝑛 such that:

(i) 𝑐 := 𝛼2𝑎5+𝑎7
𝛼

≠ 0 and the polynomial 𝑅3 (𝑥) := 𝑥3 + 𝑏𝑥2 + 𝑐2 has all its roots in

F2𝑛 where 𝑏 := 𝛼5+𝛼𝑎4+𝑎5
𝛼

, and

(ii) TrF2𝑛 /F2

(
𝛼5+𝛼𝑎4+𝑎5

𝛼3

)
= 0,

then 𝛿F2𝑛 (𝑓 ) = 8 if 𝑛 is sufficiently large (namely if 𝑛 ⩾ 15).

Remark 1.1. Functions which are APN over infinitely many extensions of the base field
are called exceptional APN. Aubry, McGuire and Rodier conjectured in [1] that, up to a
certain equivalence, the Gold functions 𝑓 (𝑥) = 𝑥2𝑘+1 and the Kasami–Welch functions
𝑓 (𝑥) = 𝑥22𝑘−2𝑘+1 are the only exceptional APN functions. The results of the present
paper imply that the polynomials of degree 10 satisfying the conditions of our theorem
are a fortiori not exceptional APN: we recover a known result since the conjecture in
the case of polynomials 𝑓 of degree 2𝑒 with 𝑒 odd and when 𝑓 contains a term of odd
degree has been proved by Aubry, McGuire and Rodier in [1].

Section 2 is dedicated to the strategy of introducing a polynomial whose splitting
field produces a Galois extension in which we will prove the existence of a place which
totally splits using Chebotarev’s density theorem. Section 3 focuses on the first part
of the previous theorem and relies on Morse polynomial theory to obtain monodromy
groups equal to the symmetric group. Finally Section 4 concentrates on the second part
of the previous theorem and uses the characterization of the Galois groups of quartic
polynomials through their quadratic and cubic resolvents.
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2 Monodromy groups, Morse polynomials and geo-
metric extensions

Let 𝑓 (𝑥) = ∑10
𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F𝑞 [𝑥], where 𝑞 = 2𝑛 , be a polynomial of degree𝑚 = 10 (so

𝑎0 is always supposed to be non-zero). Let 𝛼 ∈ F∗𝑞 and consider𝐷𝛼 𝑓 (𝑥) = 𝑓 (𝑥+𝛼)+ 𝑓 (𝑥)
the derivative of 𝑓 with respect to 𝛼 . By definition, the differential uniformity of 𝑓 is
given by

𝛿 (𝑓 ) := max
(𝛼,𝛽 ) ∈F∗𝑞×F𝑞

♯{𝑥 ∈ F𝑞 | 𝐷𝛼 𝑓 (𝑥) = 𝛽}.

Consider the unique polynomial 𝐿𝛼 𝑓 such that 𝐿𝛼 𝑓 (𝑥 (𝑥 + 𝛼)) = 𝐷𝛼 𝑓 (𝑥) (see Propo-
sition 2.3 of [2] for the existence and the unicity of such a polynomial 𝐿𝛼 𝑓 ) and let us
denote by 𝑑 its degree. A simple calculation gives :

𝐷𝛼 𝑓 (𝑥) = (𝑎0𝛼
2 + 𝑎1𝛼)𝑥8 + 𝑎3𝛼𝑥

6 + 𝑎3𝛼
2𝑥5 + (𝑎3𝛼

3 + 𝑎4𝛼
2 + 𝑎5𝛼)𝑥4

+ 𝑎3𝛼
4𝑥3 + (𝑎0𝛼

8 + 𝑎3𝛼
5 + 𝑎4𝛼

4 + 𝑎7𝛼)𝑥2 + (𝑎1𝛼
8 + 𝑎3𝛼

6 + 𝑎5𝛼
4 + 𝑎7𝛼

2)𝑥
+ 𝑎0𝛼

10 + 𝑎1𝛼
9 + 𝑎2𝛼

8 + 𝑎3𝛼
7 + 𝑎4𝛼

6 + 𝑎5𝛼
5 + 𝑎6𝛼

4 + 𝑎7𝛼
3 + 𝑎8𝛼

2 + 𝑎9𝛼 (1)

and

𝐿𝛼 𝑓 (𝑥) = (𝛼2𝑎0 + 𝛼𝑎1)𝑥4 + 𝛼𝑎3𝑥
3 + (𝛼6𝑎0 + 𝛼5𝑎1 + 𝛼2𝑎4 + 𝛼𝑎5)𝑥2

+ (𝛼7𝑎1 + 𝛼5𝑎3 + 𝛼3𝑎5 + 𝛼𝑎7)𝑥
+ 𝛼10𝑎0 + 𝛼9𝑎1 + 𝛼8𝑎2 + 𝛼7𝑎3 + 𝛼6𝑎4 + 𝛼5𝑎5 + 𝛼4𝑎6 + 𝛼3𝑎7 + 𝛼2𝑎8 + 𝛼𝑎9. (2)

Then we consider the splitting field 𝐹 of the polynomial 𝐿𝛼 𝑓 (𝑥) − 𝑡 over the field
F𝑞 (𝑡) with 𝑡 a transcendental element over F𝑞 and we set F𝐹𝑞 to be the algebraic closure
of F𝑞 in 𝐹 . We consider now the Galois groups𝐺 = Gal(𝐹/F𝑞 (𝑡)) and𝐺 = Gal(𝐹/F𝐹𝑞 (𝑡))
which are respectively the arithmetic and geometric monodromy groups of 𝐿𝛼 𝑓 .

If 𝑢0, . . . , 𝑢𝑑−1 are the roots of 𝐿𝛼 𝑓 (𝑥) = 𝑡 , then we will denote by 𝑥𝑖 a root of
𝑥2 + 𝛼𝑥 = 𝑢𝑖 . So the 2𝑑 elements 𝑥0, 𝑥0 + 𝛼, . . . , 𝑥𝑑−1, 𝑥𝑑−1 + 𝛼 are the solutions of
𝐷𝛼 𝑓 (𝑥) = 𝑡 . Then we consider Ω = F𝑞 (𝑥0, . . . , 𝑥𝑑−1) the compositum of the fields 𝐹 (𝑥𝑖 )
and FΩ𝑞 the algebraic closure of F𝑞 in Ω. We set also Γ = Gal(Ω/𝐹 ) and Γ = Gal(Ω/𝐹FΩ𝑞 ).
Then we have the diagram of Figure 1 where the constant field extensions from 𝑘 = F2𝑛

are drawn and where C𝐹 and CΩ stand for the smooth projective algebraic curves
associated to the function fields 𝐹 and Ω.

The purpose here is to apply the Chebotarev density theorem in order to get the
existence of an element 𝛽 in a finite extension F of F2𝑛 such that the polynomial
𝐷𝛼 𝑓 (𝑥) + 𝛽 splits in F[𝑥]. Indeed, the Chebotarev theorem describes the distribution
of places in a Galois extension of number fields or in a geometric Galois extension of
function fields of one variable over a finite field. It states that for any conjugacy class of
the Galois group, there exists a density of places whose Frobenius automorphism falls
within that class. For an unramified place, the associated conjugacy class, that is the
Artin symbol attached to this place, is reduced to the identity automorphism if and only
if the place splits in the Galois extension.
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𝑘 = F2𝑛

𝑘 (𝑡)

𝑘 (𝑢0)

𝐹 = 𝑘 (𝑢0, . . . , 𝑢𝑑−1)

𝐹 (𝑥𝑑−1)

Ω

. . .𝐹 (𝑥0) 𝐹𝑘Ω

𝑘𝐹 (𝑡)

𝑘𝐹

𝑘Ω

𝑘Ω (𝑡) P1
𝑡 /𝑘Ω

CΩ

P1
𝑢0/𝑘

P1
𝑡 /𝑘

𝑢0

𝑡 = 𝐿𝛼 𝑓 (𝑢0)

C𝐹

𝑥2
𝑖
+ 𝛼𝑥𝑖 = 𝑢𝑖 Z/2Z

𝐺 = Gal(𝐹/𝑘 (𝑡)) 𝐺

𝐺

Γ

𝐺 × Γ̄

Γ̄

Figure 1: Diagram of field extensions and associated algebraic curves.

So the point is to work with a geometric (or regular) Galois extension Ω/F𝑞 (𝑡), that
is with no constant field extension. In other words, we want to find an 𝛼 such that
𝐺 = 𝐺 and Γ = Γ.

The regularity of the extension Ω/𝐹 will be derived from Proposition 4.6 of [2] (and
a generalization) and is related to a Trace equation. The regularity of the extension
𝐹/F𝑞 (𝑡), for its part, will come from the theory of Morse polynomials in Section 3 and
from quadratic and cubic resolvents in Section 4.

3 The result with 𝒂1𝒂3 ≠ 0
Let 𝑓 (𝑥) = ∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree𝑚 = 10 with 𝑎1 ≠ 0 and
𝑎3 ≠ 0. Consider the choice:

𝛼 = 𝑎1/𝑎0.

Then Formulas (1) and (2) give that the polynomial

𝐷 𝑎1
𝑎0
𝑓 (𝑥) =

𝑎3
1𝑎3

𝑎3
0
𝑥6 + · · ·
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has degree 6 and the polynomial

𝐿 𝑎1
𝑎0
𝑓 (𝑥) = 𝑎1𝑎3

𝑎0
𝑥3 +

(
𝑎2

1𝑎4

𝑎2
0

+ 𝑎1𝑎5

𝑎0

)
𝑥2 +

(
𝑎8

1

𝑎7
0
+
𝑎5

1𝑎3

𝑎5
0

+
𝑎3

1𝑎5

𝑎3
0

+ 𝑎1𝑎7

𝑎0

)
𝑥

+
𝑎8

1𝑎2

𝑎8
0

+
𝑎7

1𝑎3

𝑎7
0

+
𝑎6

1𝑎4

𝑎6
0

+
𝑎5

1𝑎5

𝑎5
0

+
𝑎4

1𝑎6

𝑎4
0

+
𝑎3

1𝑎7

𝑎3
0

+
𝑎2

1𝑎8

𝑎2
0

+ 𝑎1𝑎9

𝑎0

has degree 𝑑 = 3.
Recall that a polynomial 𝑔 ∈ F2𝑛 [𝑥] is said to be Morse (see the Appendix of Geyer

to the paper [6]) if it has odd degree, if the critical points of 𝑔 are non degenerate (i.e.
the derivative 𝑔′ and the second Hasse–Schmidt derivative 𝑔[2] have no common roots)
and if the critical values of 𝑔 are distinct (𝑔 does not take the same value at different
zeros of 𝑔′). We have:

Proposition 3.1. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree 10. If

(i) 𝑎1𝑎3 ≠ 0, and

(ii) 𝑎4
0𝑎

2
1𝑎

2
4 + 𝑎6

0𝑎
2
5 + 𝑎7

1𝑎3 + 𝑎2
0𝑎

4
1𝑎

2
3 + 𝑎4

0𝑎
2
1𝑎3𝑎5 + 𝑎6

0𝑎3𝑎7 ≠ 0,

then the polynomial 𝐿 𝑎1
𝑎0
𝑓 is Morse.

Proof. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 be as in the theorem and set 𝑔 = 𝐿 𝑎1
𝑎0
𝑓 . The polynomial 𝑔

has odd degree (its degree is 3) and the critical values of 𝑔 are obviously distinct since
𝑔′ has degree 2 and thus has only one double root.

Now let us find a necessary and sufficient condition for the critical points of 𝑔 to be
nondegenerate. We have 𝑔′ (𝑥) = 𝑎1𝑎3

𝑎0
𝑥2 + 𝑎8

1
𝑎7

0
+ 𝑎5

1𝑎3

𝑎5
0
+ 𝑎3

1𝑎5

𝑎3
0
+ 𝑎1𝑎7

𝑎0
.

Recall that the Hasse–Schmidt derivative 𝑔[2] is defined by the equality 𝑔(𝑡 + 𝑢) ≡
𝑔(𝑡) + 𝑔′ (𝑡)𝑢 + 𝑔[2] (𝑡)𝑢2 (mod 𝑢3) where 𝑢 and 𝑡 are independent variables. Then we
get here: 𝑔[2] (𝑥) = 𝑎1𝑎3

𝑎0
𝑥 + 𝑎2

1𝑎4
𝑎2

0
+ 𝑎1𝑎5

𝑎0
which has 𝑥 =

𝑎0𝑎5+𝑎1𝑎4
𝑎0𝑎3

as a root. And this root
is also a root of 𝑔′ if and only if

𝑎4
0𝑎

3
1𝑎

2
4 + 𝑎6

0𝑎1𝑎
2
5 + 𝑎8

1𝑎3 + 𝑎2
0𝑎

5
1𝑎

2
3 + 𝑎4

0𝑎
3
1𝑎3𝑎5 + 𝑎6

0𝑎1𝑎3𝑎7 = 0.

Thus condition (ii) ensures that the polynomial 𝑔 = 𝐿 𝑎1
𝑎0
𝑓 is Morse. □

Theorem 3.2. For 𝑛 sufficiently large, namely for 𝑛 ⩾ 13, for all polynomials 𝑓 =∑10
𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] of degree 10 such that :

(i) 𝑎1𝑎3 ≠ 0, and

(ii) TrF2𝑛 /F2

(
𝑎1𝑎4+𝑎5
𝑎2

1𝑎3

)
= 0, and

(iii) 𝑎2
1𝑎

2
4 + 𝑎2

5 + 𝑎7
1𝑎3 + 𝑎4

1𝑎
2
3 + 𝑎2

1𝑎3𝑎5 + 𝑎3𝑎7 ≠ 0,

we have 𝛿F2𝑛 (𝑓 ) ⩾ 6.
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Proof. Since the differential uniformity of a polynomial is unchanged if it is multiplied
by a non-zero scalar element, one can suppose that 𝑓 is monic i.e. 𝑎0 = 1. Conditions (i)
and (iii) together with Proposition 3.1 imply that 𝐿𝑎1 𝑓 is a Morse polynomial of degree
𝑑 = 3. But the analogue of the Hilbert theorem given by Serre in Theorem 4.4.5 of [9]
(and detailed in even characteristic in the Appendix of Geyer in [6]) asserts that the
geometric monodromy group of a Morse polynomial of degree 𝑑 is the symmetric group
S𝑑 . But since it is contained in its arithmetic monodromy group which is also a subgroup
of S𝑑 , they coincide. Hence we deduce that the extension 𝐹/F2𝑛 (𝑡) is geometric.

Moreover, Proposition 4.6 of [2] gives us that the extension Ω/𝐹 will be geomet-
ric if there exists 𝑥 ∈ F2𝑛 such that 𝑥2 + 𝛼𝑥 = 𝑏1/𝑏0, where the 𝑏𝑖 ’s are given by
𝐿𝛼 𝑓 (𝑥) =

∑𝑑
𝑘=0 𝑏𝑑−𝑘𝑥

𝑘 . In our case, the equation reduces to 𝑥2+𝑎1𝑥 = (𝑎2
1𝑎4+𝑎1𝑎5)/𝑎1𝑎3.

Hilbert’90 theorem implies that the equation 𝑥2 + 𝑎1𝑥 =
𝑎1𝑎4+𝑎5

𝑎3
has a solution in F2𝑛 if

and only if TrF2𝑛 /F2

(
𝑎1𝑎4+𝑎5
𝑎2

1𝑎3

)
= 0, which is exactly condition (ii) of the theorem.

Thus Proposition 4.6 of [2] implies that the extension Ω/𝐹 is geometric. Then we
can apply the effective version of the Chebotarev density theorem given by Pollack in
[8] to get the following lower bound (depending on 𝑛, the degree 𝑑Ω of the extension
Ω/F2𝑛 (𝑡) and the genus 𝑔Ω of the function field Ω) for the number𝑉 of places of degree
one in F2𝑛 (𝑡) which totally split in Ω (see for more details the proof of Theorem 4.1 of
[3]):

𝑉 ⩾
2𝑛

𝑑Ω
− 2
𝑑Ω

(𝑔Ω2𝑛/2 + 𝑔Ω + 𝑑Ω).

If𝑛 is sufficiently large, this number is at least one. To be explicit, we have seen above
that𝐺 = 𝐺 = S3 and moreover, by Proposition 4.6 of [2], we have that Γ = Γ = (Z/2Z)2,
so 𝑑Ω = 3! × 22 = 24. Hence 𝑉 ⩾ 1 as soon as 2𝑛 − 2𝑔Ω2𝑛/2 − 2𝑔Ω − 72 > 0.

Now by Lemma 14 of [8] we have 𝑔Ω ⩽ 1
2 (deg𝐷𝛼 𝑓 − 3)𝑑Ω + 1 = 37. Hence if

𝑛 ⩾ 13 we have 𝑉 ⩾ 1 and this gives the existence of 𝛽 ∈ F2𝑛 such that the polynomial
𝐷𝛼 𝑓 (𝑥) + 𝛽 splits in F2𝑛 [𝑥] with no repeated factors. The differential uniformity of 𝑓 is
thus greater than or equal to the degree of 𝐷𝛼 𝑓 , which is 6 in our present case. □

It implies for example that the polynomial 𝑓 (𝑥) = 𝑥10 +𝑥9 +𝑥7 +𝑥3 has a differential
uniformity over F2𝑛 greater than or equal to 6 for 𝑛 ⩾ 13.

Corollary 3.3. All polynomials

𝑓 (𝑥) = 𝑥10 + 𝑎1𝑥
9 + 𝑎2𝑥

8 + 𝑎3𝑥
7 + 𝑎6𝑥

4 + 𝑎7𝑥
3 + 𝑎8𝑥

2 + 𝑎9𝑥 + 𝑎10

with 𝑎1, 𝑎3 in F∗2𝑛 and 𝑎2, 𝑎6, 𝑎7, 𝑎8, 𝑎9, 𝑎10 in F2𝑛 and such that 𝑎7 ≠ 𝑎7
1 + 𝑎4

1𝑎3 have a
differential uniformity over F2𝑛 greater than or equal to 6 for 𝑛 sufficiently large.

4 The case with 𝒂1 = 0 and 𝒂3 = 0
Making the choice 𝛼 = 𝑎1/𝑎0 in the previous section gave a polynomial 𝐷𝛼 𝑓 of

degree 6, so the number of solutions of any equation 𝐷𝛼 𝑓 (𝑥) = 𝛽 could be at most 6.
If we choose 𝛼 ≠ 𝑎1/𝑎0 then the polynomial 𝐷𝛼 𝑓 will be of degree 8 and the equation



Poly. J. Math. 1 (2) 7

𝐷𝛼 𝑓 (𝑥) = 𝛽 can have 8 solutions. Let us study what happens in a particular case of this
situation.

Suppose without loss of generality that 𝑎0 = 1 and let 𝛼 ∈ F∗2𝑛 be such that 𝛼 +𝑎1 ≠ 0
i.e. 𝛼 ≠ 𝑎1. Then, by Formulas (1) and (2), we deduce that 𝐷𝛼 𝑓 has degree 8 and 𝐿𝛼 𝑓 has
degree 𝑑 = 4. The following proposition gives conditions for the algebraic and geometric
monodromy groups of 1

𝛼2𝐿𝛼 𝑓 (𝑥) to be the Klein group Z/2Z × Z/2Z.

Proposition 4.1. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree 10 with 𝑎0 = 1,
𝑎1 = 𝑎3 = 0. Let 𝛼 ∈ F∗2𝑛 and set 𝑏 := 𝛼5+𝛼𝑎4+𝑎5

𝛼
and 𝑐 := 𝛼2𝑎5+𝑎7

𝛼
. Suppose that 𝑐 ≠ 0 and

that the polynomial 𝑅3 (𝑥) := 𝑥3 + 𝑏𝑥2 + 𝑐2 factors over F2𝑛 as the product of three linear
factors (which means that TrF2𝑛 /F2

(
𝑏3

𝑐2

)
= TrF2𝑛 /F2 (1) and the roots of the polynomial

𝑄 (𝑇 ) := 𝑇 2 + 𝑐2𝑇 + 𝑏6 are cubes in F2𝑛 (respectively in F22𝑛 ) if 𝑛 is even (respectively if 𝑛
is odd).

Then the quartic polynomial 1
𝛼2𝐿𝛼 𝑓 (𝑥) has algebraic and geometric monodromy groups

isomorphic to the Klein group.

Proof. If we suppose that 𝑎0 = 1 and 𝑎1 = 𝑎3 = 0, then we get by Formula (2), for any
𝛼 ∈ F∗2𝑛 :

𝐿𝛼 𝑓 (𝑥) = 𝛼2𝑥4 + (𝛼6 + 𝛼2𝑎4 + 𝛼𝑎5)𝑥2 + (𝛼3𝑎5 + 𝛼𝑎7)𝑥
+ 𝛼10 + 𝛼8𝑎2 + 𝛼6𝑎4 + 𝛼5𝑎5 + 𝛼4𝑎6 + 𝛼3𝑎7 + 𝛼2𝑎8 + 𝛼𝑎9

We set 𝑔 := 1
𝛼2𝐿𝛼 𝑓 and we consider the irreducible polynomial

𝑔(𝑥) − 𝑡 =
1
𝛼2𝐿𝛼 𝑓 (𝑥) − 𝑡 ∈ F2𝑛 (𝑡) [𝑥]

(recall that any polynomial 𝑃 (𝑥) ∈ F2𝑛 [𝑥] gives rise to an irreducible polynomial 𝑃 (𝑥)−𝑡
in the ring F2𝑛 (𝑡) [𝑥]). We have:

𝑔(𝑥) − 𝑡 = 𝑥4 + 𝛼5 + 𝛼𝑎4 + 𝑎5

𝛼
𝑥2 + 𝛼2𝑎5 + 𝑎7

𝛼
𝑥

+ 𝛼9 + 𝛼7𝑎2 + 𝛼5𝑎4 + 𝛼4𝑎5 + 𝛼3𝑎6 + 𝛼2𝑎7 + 𝛼𝑎8 + 𝑎9

𝛼
+ 𝑡 .

So we have
𝑔(𝑥) − 𝑡 = 𝑥4 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

with 𝑏 := 𝛼5+𝛼𝑎4+𝑎5
𝛼

, 𝑐 := 𝛼2𝑎5+𝑎7
𝛼

and 𝑑 := 𝛼9+𝛼7𝑎2+𝛼5𝑎4+𝛼4𝑎5+𝛼3𝑎6+𝛼2𝑎7+𝛼𝑎8+𝑎9
𝛼

+ 𝑡 .
The monic quartic polynomial 𝑔(𝑥) − 𝑡 in F2𝑛 (𝑡) [𝑥] with no cubic term is separable

if and only if 𝑐 ≠ 0 (see the illustration of Theorem 3.4. of [5]) and its quadratic resolvent
𝑅2 (𝑥) and its cubic resolvent 𝑅3 (𝑥) are given by (see equations (3.4) and (3.5) of [5]):

𝑅2 (𝑥) = 𝑥2 + 𝑐2𝑥 + (𝑏3 + 𝑐2)𝑐2
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and
𝑅3 (𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐2.

It is well-known that 𝑅2 (𝑋 ) is reducible if and only if TrF2𝑛 /F2

(
(𝑏3+𝑐2 )𝑐2

𝑐4

)
= 0 i.e.

TrF2𝑛 /F2

(
𝑏3

𝑐2

)
= TrF2𝑛 /F2 (1).

Let us consider now the reducibility of the polynomial 𝑅3 (𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐2. The
substitution 𝑧 = 𝑥 +𝑏 eliminates the quadratic term: it gives the equation 𝑧3+𝑏2𝑧+𝑐2 = 0.

Theorem 1 of [11] gives that the polynomial 𝑧3 + 𝑏2𝑧 + 𝑐2 (with 𝑐 ≠ 0) is reducible if
and only if

(i) TrF2𝑛 /F2

(
𝑏6

𝑐4

)
≠ TrF2𝑛 /F2 (1) (in this case the polynomial has a unique root in F2𝑛 ),

or

(ii) TrF2𝑛 /F2

(
𝑏6

𝑐4

)
= TrF2𝑛 /F2 (1) and the roots of the polynomial 𝑄 (𝑇 ) := 𝑇 2 + 𝑐2𝑇 + 𝑏6

are cubes in F2𝑛 if 𝑛 is even, or in F22𝑛 if 𝑛 is odd (in this case the polynomial
𝑧3 + 𝑏2𝑧 + 𝑐2 factors over F2𝑛 as the product of three linear factors).

So if 𝛼 ∈ F∗2𝑛 is such that TrF2𝑛 /F2

(
𝑏6

𝑐4

)
= TrF2𝑛 /F2 (1), i.e. TrF2𝑛 /F2

(
𝑏3

𝑐2

)
= TrF2𝑛 /F2 (1),

and also such that the roots of the polynomial𝑄 (𝑇 ) are cubes in F2𝑛 or in F22𝑛 (according
as 𝑛 is even or odd), then the polynomials 𝑅2 (𝑥) and 𝑅3 (𝑥) are reducibles.

Finally, with the hypothesis of the proposition, 𝑔(𝑥) − 𝑡 is a separable irreducible
quartic polynomial of F2𝑛 (𝑡) [𝑥] such that its quadratic and cubic resolvents are re-
ducibles. By Theorem 3.4. of [5], we obtain that the Galois group 𝐺𝑔 of the polynomial
𝑔(𝑥) − 𝑡 = 1

𝛼2𝐿𝛼 𝑓 (𝑥) − 𝑡 , which is the arithmetic monodromy group of the polynomial
𝑔(𝑥) = 1

𝛼2𝐿𝛼 𝑓 (𝑥), is isomorphic to the Klein group Z/2Z × Z/2Z.
Since the polynomial 𝑔(𝑥) − 𝑡 is irreducible over F2𝑛 (𝑡), the arithmetic and the

geometric monodromy groups of 1
𝛼2𝐿𝛼 𝑓 (𝑥), seen as permutation groups, are transitive

subgroups of the symmetric group S4. It is well-known (see [5] for example) that the
only transitive subgroups of S4 are S4 himself, the alternate group A4, three conjugate
subgroups isomorphic to the dihedral group 𝐷4 of order 8, three conjugate subgroups
isomorphic to the cyclic group Z/4Z and one subgroup isomorphic to the Klein group
Z/2Z × Z/2Z.

Since the geometric monodromy group𝐺𝑔 of 𝑔(𝑥) = 1
𝛼2𝐿𝛼 𝑓 (𝑥) is a normal subgroup

of 𝐺𝑔 and a transitive subgroup of S4, we obtain that 𝐺𝑔 is also the Klein group Z/2Z ×
Z/2Z. □

Remark 4.2. The condition 𝑐 ≠ 0 in the previous theorem is equivalent to saying that
the polynomial 𝑔(𝑥) − 𝑡 := 1

𝛼2𝐿𝛼 𝑓 (𝑥) − 𝑡 ∈ F2𝑛 (𝑡) [𝑥] is separable (see the illustration of
Theorem 3.4. of [5]).
Remark 4.3. The condition in the previous theorem saying that the polynomial 𝑅3 (𝑥) :=
𝑥3 + 𝑏𝑥2 + 𝑐2 factors over F2𝑛 as the product of three linear polynomials is equivalent
to saying that (see Theorem 1 of [11]): TrF2𝑛 /F2

(
𝑏3

𝑐2

)
= TrF2𝑛 /F2 (1) and the roots of the

equation 𝑇 2 + 𝑐2𝑇 + 𝑏6 are cubes in F2𝑛 (respectively in F22𝑛 ) if 𝑛 is even (respectively if
𝑛 is odd).
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Example 4.4. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree 10 with 𝑎0 = 1,
𝑎1 = 𝑎3 = 𝑎4 = 𝑎5 = 0 and 𝑎7 = 1, i.e. the polynomial 𝑓 has the form

𝑓 (𝑥) = 𝑥10 + 𝑎2𝑥
8 + 𝑎6𝑥

4 + 𝑥3 + 𝑎8𝑥
2 + 𝑎9𝑥 + 𝑎10

with 𝑎2, 𝑎6, 𝑎8, 𝑎9, 𝑎10 in F2𝑛 . Let us show that if 𝑛 ≡ 0 (mod 4) then there exists 𝛼 ∈ F∗2𝑛
such that the polynomial 1

𝛼2𝐿𝛼 𝑓 (𝑥) has algebraic and geometric monodromy groups
isomorphic to the Klein group.

Indeed, let 𝛼 ∈ F∗2𝑛 and consider, as in the proof of Proposition 4.1, the irreducible
polynomial

𝑔(𝑥) − 𝑡 :=
1
𝛼2𝐿𝛼 𝑓 (𝑥) − 𝑡 ∈ F2𝑛 (𝑡) [𝑥] .

So we have
𝑔(𝑥) − 𝑡 = 𝑥4 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

with 𝑏 := 𝛼4, 𝑐 := 1
𝛼

and 𝑑 := 𝛼9+𝛼7𝑎2+𝛼3𝑎6+𝛼2+𝛼𝑎8+𝑎9
𝛼

+ 𝑡 .
Since 𝑐 ≠ 0 then, by Remark 4.2, the polynomial 𝑔(𝑥) − 𝑡 is separable. Moreover, the

condition TrF2𝑛 /F2

(
𝑏3

𝑐2

)
= TrF2𝑛 /F2 (1) in Proposition 4.1 remains to

TrF2𝑛 /F2 (𝛼7) = TrF2𝑛 /F2 (1) = 𝑛 (mod 2).

Now the equation 𝑇 2 + 𝑐2𝑇 + 𝑏6 = 0 becomes

𝑇 2 + 1
𝛼2𝑇 + 𝛼24 = 0.

We are looking for 𝛼 in F∗2𝑛 such that the solutions of this equation are cubes in F2𝑛 .
Note that these roots belong to F2𝑛 if and only if TrF2𝑛 /F2 (𝛼28) = 0, i.e. TrF2𝑛 /F2 (𝛼7) = 0.

But one can show that there exists 𝛼 ∈ F∗24 such that the polynomial𝑇 2+ 1
𝛼2𝑇 +𝛼24 has

roots which are cubes in F∗16 and with TrF24/F2 (𝛼7) = 0. Indeed, take F16 = F2 [𝑋 ]/(𝑋 4 +
𝑋 3 + 1) = F2 (𝜃 ) and choose 𝛼 = 𝜃 10. Then

𝑄 (𝑇 ) = 𝑇 2 + 𝜃 10𝑇 + 1 = 𝑇 2 + 1
(𝜃 10)2𝑇 + (𝜃 10)24 = (𝑇 + (𝜃 2)3) (𝑇 + (𝜃 3)3)

with

TrF24/F2 (𝛼7) = TrF24/F2 (𝜃 70) = TrF24/F2 (𝜃 10) = TrF24/F2 (𝜃 5) = TrF24/F2 (𝛼2) = 0.

In conclusion, if 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] is a polynomial of degree 10 with
𝑎0 = 𝑎7 = 1 and 𝑎1 = 𝑎3 = 𝑎4 = 𝑎5 = 0, and if 𝑛 ≡ 0 (mod 4) there exists 𝛼 ∈ F∗2𝑛 (since
in this case F16 is included in F2𝑛 ) such that 𝑐 ≠ 0 and, by Remark 4.3, such that the
polynomial 𝑅3 (𝑥) := 𝑥3 + 𝑏𝑥2 + 𝑐2 has all its roots in F2𝑛 . Hence by Proposition 4.1 the
polynomial 1

𝛼2𝐿𝛼 𝑓 (𝑥) has algebraic and geometric monodromy groups isomorphic to
the Klein group.



Poly. J. Math. 1 (2) 10

Recall that 𝐹 is the splitting field of the polynomial 𝐿𝛼 𝑓 (𝑥) − 𝑡 over the field F2𝑛 (𝑡)
and Ω = F2𝑛 (𝑥0, . . . , 𝑥𝑑−1) is the compositum of the fields 𝐹 (𝑥𝑖 ), where 𝑢0, . . . , 𝑢𝑑−1 are
the roots of 𝐿𝛼 𝑓 (𝑥) = 𝑡 and 𝑥𝑖 are the roots of 𝑥2 + 𝛼𝑥 = 𝑢𝑖 .

Now let us give a sufficient condition for the extension Ω/𝐹 to be geometric.

Lemma 4.5. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree 10 with 𝑎0 = 1,
𝑎1 = 𝑎3 = 0. Let 𝛼 ∈ F∗2𝑛 and set 𝑏 := 𝛼5+𝛼𝑎4+𝑎5

𝛼
and 𝑐 := 𝛼2𝑎5+𝑎7

𝛼
. Suppose that 𝑐 ≠ 0 and

that the polynomial 𝑅3 (𝑥) := 𝑥3 + 𝑏𝑥2 + 𝑐2 factors over F2𝑛 as the product of three linear
factors.

Then the extension Ω/𝐹 is geometric as soon as the equation 𝑥2 + 𝛼𝑥 =
𝛼5+𝛼𝑎4+𝑎5

𝛼
has a

solution in F2𝑛 .

Proof. We begin proving that if 𝑢 is a root of 𝐿𝛼 𝑓 (𝑥) − 𝑡 in 𝐹 , then, for each place ℘ of
𝐹 above the place ∞ at infinity of F2𝑛 (𝑡), we have that 𝑢 has a simple pole at ℘.

Indeed, the field F2𝑛 (𝑡) (𝑢) is just the rational function field F2𝑛 (𝑢). The place at
infinity 𝑃∞ of F2𝑛 (𝑢) is the pole of 𝑢 and it is the place above the place at infinity ∞ of
F2𝑛 (𝑡) (which corresponds to the pole of 𝑡 ). Thus the valuation of 𝑢 at 𝑃∞ is given by
𝑣𝑃∞ (𝑢) = −1 and therefore 𝑣𝑃∞ (𝐿𝛼 𝑓 (𝑢)) = − deg(𝐿𝛼 𝑓 (𝑥)). Since the ramification index
𝑒 (𝑃∞ |∞) of 𝑃∞ over ∞ verify:

𝑣𝑃∞ (𝐿𝛼 𝑓 (𝑢)) = 𝑣𝑃∞ (𝑡) = 𝑒 (𝑃∞ |∞)𝑣∞ (𝑡) = −𝑒 (𝑃∞ |∞)

thus we obtain:
𝑒 (𝑃∞ |∞) = deg(𝐿𝛼 𝑓 (𝑥)) = 4.

But the hypotheses on 𝑐 and 𝑅3 (𝑥) imply by Proposition 4.1 that the Galois extension
𝐹/F2𝑛 (𝑡) has Galois group the Klein group of order 4 ( the place at infinity of F2𝑛 (𝑡) is
then totally ramified in F2𝑛 (𝑢)). We conclude that 𝐹 = F2𝑛 (𝑢) and then 𝑢 has a simple
pole at ℘ = 𝑃∞.

Now we show that if 𝐽 ⊂ {0, 1, 2, 3} is neither empty nor the whole set then
∑

𝑗∈ 𝐽 𝑢 𝑗

has a pole at the place at infinity 𝑃∞ of 𝐹 . Since the coefficient of 𝑥3 in the polynomial
𝐿𝛼 𝑓 is zero (see Formula (2)), we have that 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 = 0. We are then reduced
to show that 𝑢0 + 𝑢1, 𝑢0 + 𝑢2 and 𝑢0 + 𝑢3 have a pole at 𝑃∞. But we are in the situation
where the Galois extension 𝐹/F2𝑛 (𝑡) has a Galois group isomorphic to Z/2Z × Z/2Z, so
the following diagram summarize the situation (where 𝑘 := F2𝑛 and all the extensions
have degree 2).

𝑘 (𝑡)

𝑘 (𝑢0 + 𝑢2)

𝐹

𝑘 (𝑢0 + 𝑢3)𝑘 (𝑢0 + 𝑢1)
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If we denote by ∞𝑖 the place at infinity of F2𝑛 (𝑢0 + 𝑢𝑖 ), for 𝑖 = 1, 2, 3, we have that
the ramification index 𝑒 (𝑃∞ |∞𝑖 ) = 𝑒 (∞𝑖 |∞) = 2 for all 𝑖 since ∞ is totally ramified in
the extension 𝐹/F2𝑛 (𝑡).

So we have

𝑣𝑃∞ (𝑢0 + 𝑢𝑖 ) = 𝑒 (𝑃∞ |∞𝑖 )𝑣∞𝑖
(𝑢0 + 𝑢𝑖 ) = 2 × (−1) = −2 ⩽ −1

which proves that 𝑃∞ is a pole of 𝑢0 + 𝑢𝑖 .
Then, the proof of Proposition 4.6 of [2] remains true with polynomials of degree 10

with geometric and arithmetic monodromy groups the Klein group: if there exists 𝑥 ∈
F2𝑛 such that 𝑥2 +𝛼𝑥 = 𝑏1/𝑏0 where the 𝑏′𝑖𝑠 are defined by 1

𝛼2𝐿𝛼 𝑓 (𝑥) =
∑4

𝑖=0 𝑏4−𝑖𝑥𝑖 then
Gal (𝐹 (𝑥0, 𝑥1, 𝑥2, 𝑥3)/𝐹 ) and Gal

(
𝐹FΩ2𝑛 (𝑥0, 𝑥1, 𝑥2, 𝑥3)/𝐹FΩ2𝑛

)
are isomorphic to (Z/2Z)3,

where FΩ2𝑛 denotes the algebraic closure of F2𝑛 in Ω and 𝐹FΩ2𝑛 denotes the compositum
of the fields 𝐹 and FΩ2𝑛 . The coefficients 𝑏𝑖 ’s come from Equation (2): 𝑏1/𝑏0 =

𝛼5+𝛼𝑎4+𝑎5
𝛼

,
and the existence of a solution in F2𝑛 of the equation 𝑥2 + 𝛼𝑥 = 𝑏1/𝑏0 is exactly the last
condition of the Lemma. Thus we conclude that the extension Ω/𝐹 is geometric. □

Theorem 4.6. Let 𝑓 =
∑10

𝑖=0 𝑎10−𝑖𝑥𝑖 ∈ F2𝑛 [𝑥] be a polynomial of degree 10 with 𝑎1 =

𝑎3 = 0.
Suppose that there exists 𝛼 ∈ F∗2𝑛 such that:

(i) 𝑐 := 𝛼2𝑎5+𝑎7
𝛼

≠ 0 and the polynomial 𝑅3 (𝑥) := 𝑥3 + 𝑏𝑥2 + 𝑐2 has all its roots in F2𝑛

where 𝑏 := 𝛼5+𝛼𝑎4+𝑎5
𝛼

, and

(ii) TrF2𝑛 /F2

(
𝛼5+𝛼𝑎4+𝑎5

𝛼3

)
= 0.

Then 𝛿F2𝑛 (𝑓 ) = 8 if 𝑛 is sufficiently large (namely if 𝑛 ⩾ 15).

Proof. Let 𝑓 be a polynomial as in the theorem. Looking at its differential uniformity,
one can suppose that 𝑓 is monic. Condition (i) implies by Proposition 4.1 that the
polynomial 1

𝛼2𝐿𝛼 𝑓 (𝑥) has algebraic and geometric monodromy groups isomorphic to
the Klein group. Hence the splitting field 𝐹 of the polynomial 𝑔(𝑥) := 1

𝛼2𝐿𝛼 𝑓 (𝑥) − 𝑡 is a
geometric extension of F2𝑛 (𝑡).

Moreover, by Lemma 4.5, the extension Ω/𝐹 is geometric as soon as the equation
𝑥2 + 𝛼𝑥 =

𝛼5+𝛼𝑎4+𝑎5
𝛼

has a solution in F2𝑛 . By the Hilbert’90 Theorem, this is equivalent
to TrF2𝑛 /F2

(
𝛼5+𝛼𝑎4+𝑎5

𝛼3

)
= 0, which is precisely Condition (ii).

Then we use the Chebotarev theorem, as in the proof of Theorem 3.2, to obtain, if
𝑛 is sufficiently large (namely here if 𝑛 ⩾ 15), the existence of 𝛽 ∈ F2𝑛 such that the
polynomial 𝐷𝛼 𝑓 (𝑥) + 𝛽𝛼2 splits in F2𝑛 [𝑥] with no repeated factors.

Thus the differential uniformity of 𝑓 is equal to the degree of 𝐷𝛼 𝑓 that is 8. □

Example 4.7. Let us come back to Example 4.4, and since the differential uniformity
is unchanged if we add an additive polynomial, let us just consider the polynomial
𝑓 (𝑥) = 𝑥10 + 𝑥3 ∈ F2𝑛 [𝑥]. We have seen that, if 𝑛 ≡ 0 (mod 4), then there exists
𝛼 ∈ F∗16 ⊂ F∗2𝑛 such that the polynomial 𝑇 2 + 1

𝛼2𝑇 + 𝛼24 has roots which are cubes in



Poly. J. Math. 1 (2) 12

F∗16 and with TrF16/F2 (𝛼7) = TrF16/F2 (𝛼2) = 0. Hence there exists 𝛼 ∈ F∗2𝑛 such that
the polynomial 1

𝛼2𝐿𝛼 𝑓 (𝑥) has algebraic and geometric monodromy groups isomorphic
to the Klein group. Moreover the equation 𝑥2 + 𝛼𝑥 =

𝑏1
𝑏0

has a solution in F2𝑛 since

TrF2𝑛 /F2

(
𝛼5+𝛼𝑎4+𝑎5

𝛼3

)
= TrF2𝑛 /F2 (𝛼2) = 0. Finally we conclude by Theorem 4.6 that if 𝑛 is

sufficiently large and 𝑛 ≡ 0 (mod 4) then 𝛿F2𝑛 (𝑓 ) = 8.
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